
WL-TR-91-1040

AD-A236 321

ADA COMPILER EVALUATION CAPABILITY

User's Guide, Release 2.0

Thomas Leavitt

Kermit Terrell

Boeing Military Airplanes

P. 0. Box 7730

Wichita KS

May 1991

Interim Report

DTICS ELECTE
JUNO 4 1991 u 3

Approved for public release; distribution is unlimited. B

AVIONICS DIRECTORATE
WRIGHT LABORATORY 91-0093
AIR FORCE SYSTEMS COMMAND 9 - 0 3
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

91 5 31 O0 0

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publica-
tion.

RAYM#ND SZYMAW Date
Project Engineer

FOR THE COMMANDER

G, 3 Apr 91

CHARLES H. KRUEGER, Chief Date

System Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify WL/AAAF , WPAFB, OH 45433-6543 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

May 1991 Interim

Ada Compiler Evaluation Capability C-F33615-86-C-1059
User's Guide, Release 2.0 PE-63756D

PR-2853
TA-01

Thomas Leavitt WU-03
Kermit Terrell

Boeing Military Airplanes
Post Office Box 7730
Wichita KS

Raymond Szymanski
WL/AAAF-3 (513) 255-3947 WL-TR-91-1040
WPAFB OH 45433-6543

Approved for Public Release; Distribution is unlimited

The Ada Compiler Evaluation Capability (ACEC) is a set of over 1500 performance
and usability tests used to assess the quality of Ada compilers. The ACEC also
provides statistical analysis tools to assist in analyzing the results generated
by the ACEC. The ACEC is documented through three major documents; the ACEC
Reader's Guide, the ACEC User's Guide and the ACEC Version Description Document.

This document, the ACEC User's Guide, describes the details necessary to execute
the ACEC test suite and the associated support tools.

Ada, Compiler, Evaluation, ACEC 109
Metrics, Evaluation & Validation Project

UN UN UN UL

LIMITATIONS

This documeit is controlled by the Boeing Military Airplanes (BMA) Software and Languages

Organization. All revisions to this document shall be approved by the above organization prior

to release.

Acoession For

NTIS GRA&I
DTIC TAB
Uneonncujed 0l
Justlf lc ,tlon

By
Distribut kon/

Avealabilty Codes

Vnt Special

2

ABSTRACT

This document is the User's Guide for the Ada Compiler Evaluation Capability (ACEC) contract.
The purpose of this document is to guide an ACEC user in running the ACEC benchmark test
suite and supporting tools.

3

ACEC
User's Guide

Contents

1 SCOPE 8
1.1 IDENTIFICATION.....
1.2 PURPOSE S1.3 INTRODUCTION....
1.3.1 Functional Requirements for the ACEC Project
1.3.2 "Potential" ACEC Users 9
1.3.3 Philosophy and General Approach. 1
1.3.4 ACEC Classification Taxonomy
1.4 EXECUTING THE ACEC.....

2 APPLICABLE DOCUMENTS 25
2.1 GOVERNMENT DOCUMENTS. 23
2.2 NON-GOVERNMENT DOCUMENTS. 25

3 TEST SUITE PREPARATION 26
3.1 INSTALLATION. 2G
3.1.1 VAX VMS. 28
3.1.2 UNIX. 28
3.2 PREPARATION. 2$
3.2.1 Input / Output. 30
3.2.2 Global Package 31
3.2.3 Timing Considerations 32
3.2.3.1 Calendar 32
3.2.3.2 CPU Time Considerations 32
3.2.3.2.1 How Test Problems Are Measured 35
3.2.4 Math Package 38
3.2.4.1 Alternative methods for MATH 43
3.2.4.1.1 Instantiate system provided NUMWG package. 43
3.2.4.1.2 Adapting to an existing non-NUMWG math library 43
3,.4.1.3 GEN MATH with portable MATH DEPENDENT..... 5
3.2.4.1.4 GEN MATH with tailored MATH DEPENDENT. 47
3.2.4.2 DEPTIEST. 49
3,2.4.3 MATHTEST. 51
3.2.5 Space Measurement 2

4

3.2.5.1 Code expansion measurement 52
3.2.5.1.1 Using Label'ADDRESS 2
3.2.5.1.2 Using the GETADR assembly routine 52
3.2.5.2 RT S size . 53
3.2.5.3 Assembly language procedure 56
3.2.6 System Parameters 56
3.2.7 Exceptional Tests 58
3.2.7.1 Interrupts 58

4 TEST SUITE COMPILATION 59
4.1 ORDER OF COMPILATION39
4.2 SYSTEM DEPENDENT TESTS 39
4.3 USING INCLUDE GO
4.4 COMPILATION G3
4.4.1 Potential Compilation Problems 63
4.4.2 Example Compilation Routines4
4.4.2.1 VAX/VMS G4
4.4.2.2 UNIX G5

5 LINKING/DOWNLOADING THE BENCHMARKS 67
5.1 MERGING PROGRAMS 67

6 RUNNING THE BENCHMARKS 69
6.1 POTENTIAL RUNTIME PROBLEMS 69
6.2 RUNNING A SUBSET 72

7 SYMBOLIC DEBUGGER ASSESSOR 74

8 PROGRAM LIBRARY ASSESSOR 78

9 DIAGNOSTIC MESSAGE ASSESSOR 81

10 ANALYSIS 83
10.1 PREPARING THE DATA 83
10.2 RUNNING M EDIAN 91
10.2.1 New Versions of the ACEC 91
10.2.1.1 Rerunning the tests 91
10.2.1.2 Reanalysis 91
10.3 INTERPRETING RESULTS 92
10.4 SSA 92
10.4.1 System Specification File 92

5

10.4.2 Input Data Files 97
10.4.3 Other Data Files. 1
10.4.4 Measurement Units 1
10.4.5 Implementation Dependencies 100

11 CONSIDERATIONS FOR CODING ADDITIONAL TESTS 101

12 ACEC USER FEEDBACK 104
12.1 HOW TO SUBMIT A PROBLEM REPORT 104
12.2 HOW TO REQUEST CHANGES 107

13 NOTES 110
13.1 ABBREVIATIONS, ACRONYMS.................... 110

6

List of Figures

1 VDD APPENDICES 12
2 THE ACEC COMMAND FILES 21
3 CPUTIMECLOCK FOR DEC ADA 34
4 TIMING LOOP TEMPLATE 36

5 USING INCLUDE G1
6 PROGRAM MERGING 68
7 CONSTRUCTING MED DATA SS
8 SINGLE SYSTEM ANALYSIS SPECIFICATION FILE SYNTAX 94
9 SINGLE SYSTEM ANALYSIS SPECIFICATION FILE EXAMPLE 96
10 SINGLE SYSTEM ANALYSIS DATA INPUT FILE FORMATS 99
11 SAMPLE TEST PROGRAM TEMPLATE 107

1 SCOPE

This section identifies the User's Guide, states its purpose, and summarizes the contents of
this guide.

1.1 IDENTIFICATION

This document is the User's Guide for the Ada Compiler Evaluation Capability (ACEC) Software
Product.

1.2 PURPOSE

The purpose of this document is to guide the user in running the ACEC benchmark programs
and the assessors on a new system and to aid the user in preparing reports summarizing the
results. For help in interpreting these findings, refer to the Reader's Guide.

1.3 INTRODUCTION

This guide will give ACEC users the information necessary to adapt and execute the ACEC
Software Product. It explains how to use the support tools, and how to deal with the problems
which can occur in the process of executing the ACEC test suite.

User comments and suggestions for enhancements are solicited and may be reflected in
future releases of the product.

The ACEC shall provide a performance assessment capability for Ada compilation systems.
The individual ACEC benchmarks provide the raw data for this assessment.

1.3.1 Functional Requirements for the ACEC Project

The ACEC Software Product consists of tvvo Computer Software Configuration Items (CSCIs):

" The operational software, which consists of a suite of performance test programs, and
sets of compilation units and script files to exercise and assess a compilation system's
symbolic debugger, program library manager, and diagnostic messages.

* The support tools, which assist the ACEC user in preparing the test suite for compilation,
in extracting data from the results of executing the test suite, and in analyzing the
performance measurements obtained.

The high level requirements on the Operational Software are derived from the needs of the
end user community which the ACEC is constructed to serve. The ACEC shall make it possible
to:

8

" Compare the performance of several implementations. The Operational Software shall
permit the determination of which is the better performing system for given expected
Ada usage.

* Isolate the strong and weak points of a specific system, relative to others which have
been tested. Weak points, once isolated, can be enhanced by implementors or avoided
by programmers.

* Determine what significant changes were made between releases of a compilation system.

" Predict performance of alternate coding styles. For example, the performance of ren-
dezvous may be such that designers will avoid tasking in their applications. The ACEC
will provide information to permit users to make such decisions in an informed manner.

" Determine whether the functional capabilities of a symbolic debugger (if one is present)
are sufficient to accomplish a set of predefined scenarios which represent slightly more
than a minimal set of capabilities. Compilation systems have provided debuggers with
very different user interfaces and functional capabilities. These scenarios will require
adaptation to different systems.

* Determine whether the functional capabilities of a program library management system
are sufficient to accomplish a set of predefined scenarios which represent more than a
minimal set of capabilities. The LRIM does not specify a user interface or a set of required
capabilities. These scenarios will require adaptation to different systems.

" Evaluate the clarity and accuracy of a system's diagnostic messages. There are no
standards for the format or content of diagnostic messages. The interpretation of the
system response to these compilation units will require manual inspection and evaluation.

1.3.2 "Poteitial" ACEC Users

There are several types of users who might be interested in using the ACEC. The different
types of users will look to the ACEC to provide different kinds of information.

* Compiler implementors will want to know the strong and weak points of their system(s).
They will also want to be able to assess improvements in their system.

" Compiler selectors are interested in comparing performance across systems to choose the
best system for their project.

* Compiler users will want to be able to predict the performance of design approaches.
They will also want to be able to isolate the strong and weak points of the compilation
system they are using and to monitor performance differences between releases of a
compilation system.

9

1.3.3 Philosophy and General Approach

The ACEC user is expected to already know how to use the Ada compilation system being

tested. While this is not always a realistic assumption, it is infeasible for the ACEC User's

Guide to explain how -'iwiry Ada compilation system which an ACEC user might encounter

will operate. For details on how to use any particular Ada compilation system, the ACEC

user is referred to the documentation on the compilation system. Similarly, for details of how
a user can perform operations in the host operating system, the user must consult system
documentation. In particular, an ACEC user is expected to know (or be able to find out from
sources other than ACEC documentation) how to: read files from tape; use the text editor;

construct a command file; compile, link and execute an Ada program; delete Ada compilation
units from a program library; and in general, how to use the tools provided by the Ada system
and the host operating system. Before starting with the ACEC proper, they need to perform

any Ada program library creation which the compilation system they are using requires.

The Ada programs provided are generally portable, consistent with the requirement to test

all major features of the Ada language. In some cases a feature is inherently implementation
dependent and will have to be adapted to operate on each new system.

For a complete list of system dependent tests, refer to the Version Description Document
(VDD) Appendix VII, "System Dependent Test Problems". The ACEC does not restrict itself

to a subset of the iguage to try to increase its portability. For example, there are some
test problems which use floating point types declared with 9 digits of precision, although there

are several Ada implementations where this size exceeds SYSTEM.MAX-DIGITS and is not

acceptable. There are some test programs which will not terminate when executed on systems
which do not support pre-emptive priorities - these programs contain checking code which
will output test problem failure code on systems which do not support pre-emption, but they

are included in the test suite even though portability is thereby decreased slightly. The decision
to include these test programs was made before the Ada Board and the Director of the Ada
Joint Program Office ruled that valid Ada implementations must support pre-emptive priority

scheduling, and the problems would have been retained in the ACEC even if the ruling had been
that pre-emptive priority scheduling was implementation dependent, because many projects are

concerned about performance where pre-emption is implemented.

Some test problems may fail to execute on a validated implementation when they violate

system capabilities, such as exceeding a capacity limit or not supporting pragma PACK. Each

project must decide for itself how serious it considers the failure of any test problem.
The ACEC contains a large number of test problems. Most individual problems are fairly

small. Many address one language feature or present an example which is particularly well

suited to the application of a specific optimization technique.

One focus of the ACEC analysis tools is on comparing performance data between different
compilation systems. Another is on studying the results on one particular system. The analysis
tool MEDIAN computes overall relative performance factors between systems and will isolate

10

test problems where any individual system is much slower (or faster) than expected, relative to
the average performance of all systems on that problem and the average performance of the
problem on all systems. ACEC users can review the MEDIAN report to isolate the weak and
strong points of an implementation, by looking for common threads among the test problems
which report exceptional performance data. ACEC users can also examine the results on a
system in more detail by running the Single System Analysis program (SSA). MEDIAN and
SSA are discussed further in Section 10, "ANALYSIS" of this document, or for detailed infor-
mation, refer to the Reader's Guide, Sections "MEDIAN OUTPUT" and "SINGLE SYSTEM
ANALYSIS".

To be successful any suite of tests must be satisfactory at each of three independent levels.

The organization of the test suite and supporting tools.

The topics of interest at this level are the reporting facilities provided and the ease with
which a user can identify the test problems in the suite which address areas that the user
is interested in.

The ACEC comparative analysis program will compare performance data between sys-
tems. It will identify the test problems which show statistically "unusual" results.

The ACEC Single System Analysis program will look at related test results and help
isolate the strong and weak points of a system's performance.

An extensive system of indexes and cross reference lists are provided in the Version
Description Document's (VDD) appendices that accompany each release. Using these,
the test problems which share a particular characteristic can easily be found and their
results examined. The VDD appendices are:

11

[Appendix Name [Contents

I Test Problem Descriptions List of test problem names with a brief

description of each. New or withdrawn
tests are identified.

II Test Problem to Source File Map List of test problems and the source file
they are contained in.

III Tape Description List of files on the delivery tape.
IV Quarantined Test Problems Cross reference of test problems

observed to fail on some systems.
V ACEC Keyword Index - 1 List of primary purposes (with LRM

references) and their associated
test problems, as well as secondary, and
incidental purposes, and comparison tests.

VI ACEC Keyword Index - 2 List of test problems with their primary

purposes (which may be for comparison with
other tests).

VII System Dependent Test Problems List of test problems which exercise

system dependent features.
VIII Optimization Techniques List of optimization techniques and the

benchmarks designed to test them.
IX Withdrawn Test Problems List of test problems which have been

withdrawn.

Figiuir 1: VDD APPENDICES

12

* The relationships between sets of individual test problems in a test suite.

The primary concern at this level is the breadth and depth of coverage the test problems
in the suite provide.

The functional requirements on the ACEC for breadth and depth of the coverage are
discussed in the Reader's Guide, Section "SCOPE OF THE ACEC", and summarized
here.

- The test suite should contain problems which:

Address all major syntactic language features.
• Demonstrate the presence (or absence) of particular compiler optimization tech-

niques by comparing results among related test problems. For example, there
are several sets of problems where one version is a "hand-optimized" variation
of another. If the system executed both versions in the same time, then it
was able to recognize the "more general" example. Test problem SS49 is the
statement "ii := LL * 0;" and SS45 is the statement "ii := 0;". If both state-
ments take the same time to execute, it is fair to assume that the compiler has
recognized the algebraic simplification possible in SS49 and exploited it.
Representative problems from Ada practice. It is important to include examples
of how Ada is actually being used. Practical problems are not designed to be
optimized (or to be unoptimizable) - they are simply built to get the work
done. Some examples are fairly large programs, and can give an estimate for the
effects of program locality on cache memory usage which is not representative
of very small programs. An example is the KALMAN program, which performs
a digital space state filter operation.

* Classical benchmark problems used in the comparison of other languages.
These include programs such as Ackermann's function, Whetstone, Dhrystone,
and sort programs. Results from these programs may be available for other
languages.

The ACEC test suite is designed to provide extensive coverage of language features
and common constructions.

- Test problems should not generally duplicate other test problems. For consistency
checking, some duplication is desirable.

- Test problems should differentiate between systems. A good test problem will run
well on some target systems and poorly on others. Executing a test problem which
all systems treat the same does not provide useful information about whether one
system is better or worse than another.
Because a limited number of systems were tested prior to this release, a test prob-
lem which all these systems treated similarly may show differences when run on

13

additional targets. When there is a "reasonable" expectation that a problem might
show differences, it is prudent to retain it in the test suite.
The results of some test problems are of independent interest - feature tests such
as rendezvous times; or exception propagation time; or procedure call time. Rela-
tive performance data is not always sufficient. A system may have a relatively fast
rendezvous, compared to other Ada implementations, but the absolute time is also
important. For example, a real time system may need to cycle every 20 milliseconds
to satisfy the applications requirements. An implementation of that application
which requires 100 rendezvous will not satisfy its performance requirements when
the fastest entry call takes 2 milliseconds. If all other computations were instan-
taneous, the program would take 180 more milliseconds to perform the indicated
synchronization than are available.
A particular test problem may be related to other problems to expose the presence
of specific optimizations. One may be an unoptimizable version of another. If the
first were removed from the suite it would be difficult to compare the tests and
reveal the presence of the optimization - even when the first problem may not
differentiate between systems.

If all the trial systems perform the specific optimization in a comparable manner,
then the two test problems will be serially correlated on all systems tested. However,
adding the performance measurement results from an implementation which does
not perform the optimization will weaker the correlation between the two test
problems, making the two test problems useful and non-redundant.

* The properties of individual test problems.

At this level, the relevant question is whether or not the particular test problem is "well-
written." The answer to this question depends on the intended purpose of the problem,
in addition to the characteristics of the actual code comprising it.

A test problem which can be optimized into a null statement is a poor problem if it was
intended to expose the performance of addition operators, but may be a well written
problem if the intention was to test for potential optimizations. For example, "XX :=
XX + 0;" would be a poor test for general addition of literal values, but is appropriate
to test for algebraic simplification.

Test problems which exhibit the characteristics described below are defined as "poorly
written". These are further discussed in the Reader's Guide, Section "CORRECTNESS
OF TEST PROBLEMS".

- The problem could be erroneous Ada.
This condition is sufficient to disqualify a problem. Erroneous test problems will be
withdrawn.

14

- The performance of the test problem could be nonrepeatable.

It might take a different computation path when it is repeatedly executed, falsifying

the assumption that the timing loop can execute the problem many times, divide by
the number of executions, and obtain a valid estimate for one execution. If the test

problem takes a different amount of execution time on each iteration, a sequence

of timing estimates may not converge.

- A problem intended to test one feature may actually test another.

For example, a problem designed to test passing literal values to a simple function

might be expanded inline and folded, making the test problem more a test of

possible compile time optimization than a test of passing literal parameters. While

it is important to test for the folding of inlined subprograms, it is also important to

test for specifying literal actual parameters when inlining is neither requested nor

possible.

Also of concern at this level is the accuracy of the timing measurements themselves.
The steps the ACEC takes to insure that the timing loop code is accurate is discussed in

depth in the Reader's Guide, Section "DETAILS OF TIMING MEASUREMENTS".

Each test problem in the ACEC has been compared against the criteria listed above.

For the purpose of running the MEDIAN analysis tool when a user has performance data

from only one compilation system, the ACEC is distributing sample data derived from running

MEDIAN on the performance data from the trial systems. This represents the "average"

performance of the systems tested, and can be useful in detecting differences between the one
system the ACEC user has data on and a hypothetical "typical" system.

There are three different but complementary ways an ACEC user can examine test results.

These are discussed in the Reader's Guide, Section "HOW TO INTERPRET THE OUTPUT
OF THE ACEC", and reviewed here.

" After running all the test programs on several systems, use MEDIAN to identify the test

problems which have statistically unusual behavior on each system.

* Select a set of test problems which use a set of features of special interest and examine
the results of these problems.

* Run the Single System Analysis program.

These approaches can be used in combination. An ACEC user could examine the set of test

problems which MEDIAN flagged as having unusual performance, trying to discover if they share

a common characteristic. After reading the test descriptions in the VDD Appendix I, "TEST

PROBLEM DESCRIPTIONS", the user may speculate that slower than predicted performance

may be due to subprogram linkages. The user could then refer to the feature cross reference

15

index in the VDD Appendix V, "ACEC KEYWORD INDEX - 1", to get a list of all test problems
using subprogram linkages, and then examine the performance of this list of problems to see
if the hypothesis of subprogram linkages seems justified (the SSA has several tables examining
subprogram linkage variations). It may be that only some of the test problems which call on
subprograms are unusually slow, but perhaps the user would notice that performance problems
occur on subprograms which pass nonscalar objects as formal parameters. The VDD indexes
and the source text itself provide a rich field for exploration. Depending on their interest, time,
and the use they intend to put the results to, it is possible that a user may form very detailed
hypotheses about combinations of language features which are responsible for particularly slow
performance, and the user may construct unique test problems to verify those hypotheses.
Many ACEC users will not be that interested or have that much time to spend. If the reason
they are running the ACEC is to choose between two or three compilation systems for one target
processor, they may not care if they find that there are not large differences in performance
between the systems. The details of the differences may not be important to them.

The important point of the above discussion is that ACEC users will not have to understand
the details of a thousand different test problems to obtain useful information from the results.

1.3.4 ACEC Classification Taxoinoiny

The Ada Compiler Evaluation Capability will not answer every question a user might have
about Ada compilers, for example, dollar cost is not addressed. The ACEC is concerned with
evaluating systems, not just compilers. No attempt is made to "factor out" the contribution
of hardware to overall performance. Some ACEC users will want to compare different target
architectures, in addition to comparing different compilers for the same target. This taxonomy
will help to place the ACEC tests in perspective and answer user questions about what assistance
the ACEC will and will not provide.

9 Covered

- Execution Time Efficiency (see Reader's Guide, Section "EXECUTION TIME EF-
FICIENCY")

This is the major emphasis of the ACEC. Users will want to be able to examine the
results of the ACEC to study aspects of Ada performance. The ACEC helps the
user in isolating the particular tests he may need by providing indexes which list
tests by various criteria.

- Code Size Efficiency (see Reader's Guide, Section "CODE SIZE EFFICIENCY")

Code expansion size is an important area of interest for the ACEC. This is measured
by using the label'ADDRESS attribute. On systems which do not support this
feature, users can adapt the ACEC timing loop code to measure code expansion
size in other ways, as discussed in Section 3.2.5.1.2.

16

The ACEC will gather size measurements for all of the tests along with execution
time. While not a major thrust of the project, some tests are included which measure
data space allocated to objects by using the X'SIZE attribute and comparing the
size of the packed objects to the minimum size possible. Sequences of allocation and
deallocation in a collection (LRM 13.2.b and 3.8) are included which will fail if space
is not reclaimed. The tests are designed as performance tests but will demonstrate,
as a side effect, whether storage reclamation takes place. These results, along with
others, are reported in the ancillary data section of the SSA report.

- Compile Time Efficiency (see Reader's Guide, Section "COMPILE TIME EFFI-
CIENCY")
While measuring compile time efficiency is not the primary purpose of the ACEC,
data is collected and can be analyzed on a compilation unit basis.

- Symbolic Debugger Assessor (see Section "SYMBOLIC DEBUGGER ASSESSOR")
The ACEC provides a set of debugger assessor scenarios (programs and sequences of
operation to perform) to enable users to evaluate a compilation system's debugger.

- Program Library Assessor (see Section "PROGRAM LIBRARY ASSESSOR")
The ACEC provides a set of library assessor scenarios (programs and sequences of
operation to perform) to enable users to evaluate a compilation system's library
system.

- Diagnostic Message Assessor (see Section "DIAGNOSTIC MESSAGE ASSESSOR")
The ACEC diagnostic assessor tests will determine whether a system's diagnostic
messages clearly identify the condition and provide information to correct it, and
whether warning messages are generated for various conditions.

* Not Explicitly Covered

- Test for Existence of Language Features
This is the charter of the ACVC (Ada Compiler Validation Capability) project. The
ACEC test suite assumes that the full Ada language is supported and correctly im-
plemented. The ACEC contains tests for the performance of representation clauses
and implementation dependent features (LRM chapter 13 features). Some test
problems will require modification to run on different systems (such as using the
pragma INTERFACE and calling on a procedure written in assembler language) and
may fail on some Ada implementations which do not support the full language.

- Capacity Tests

The ACEC is not designed to systematically probe the capacity limits of a system,
but in the course of exercising the test suite, users may discover some of the system's

17

capacity limits. The Library Assessor does explicitly exercise a system's library
capacities.

1.4 EXECUTING THE ACEC

This section provides an overview of the steps necessary to prepare, compile, link, and execute
the ACEC test suite and to use the analysis tools to study the data generated by executing the
test suite.

To execute the ACEC the user must perform the following steps:

" Before compiling any programs, the user should finish reading the User's Guide. Some
potential problems have been anticipated, and a user can save time and effort by reviewing
these before attempting to run any tests.

* Verify that the Ada system is ready to accept compilations. Some Ada systems require
their users to explicitly create an Ada program library before performing any compilations.
Users should consult the system documentation to see how this is done, if necessary.

* Read text files from the ACEC distribution tape.

These will include the ACEC Operational Software and Support Tools and some command
files which can be used as models for other systems.

" Compile the package GLOBAL. This package is WITHed by all other test programs and
must be present in the library for successful compilation.

" Construct a working math package. There are several methods a user may use to ac-
complish this, these are listed in Section 3.2.4.

" Compile, link and execute TESTCAL1 and TESTCAL2. These problems test the accuracy
of the runtime clock using the interface provided by the package CALENDAR.

* Compile and link INCLUDE. Test it on any of the test programs. This is the program
which inserts the timing loop code.

" Adapt the command files CMP, CMPCK, CMPSP. and CMP DIFF NAMES. These
command files INCLUDE, compile, and link an ACEC test program. They may need
to be adapted to the host operating system and to invoke the Ada compilation system

being tested. The versions provided assume that the host system supports parameters in

command files. UNIX scripts provide a facility of comparable power.

The difference between the four versions are as follows:

18

- CMP. This command file uses standard options to compile the program. It specifies
the compiler options for optimization and suppression of checking for violations of
predefined constraints. It also computes the elapsed time to compile and link a
program.

- CMPCK. This command file differs from CMP only in that it specifies a compiler
option to not suppress checking for violations of predefined constraints. On a
compilation system which fully supports PRAGMA SUPPRESS, it is not necessary
to adapt this file and CMP can be used.

There are many compilation systems which do not honor PRAGMA SUPPRESS in
a source program, but which provide a comparable facility with a compiler direc-
tive. The CMP CK and CMP command procedures provide ways which will permit
such systems to be evaluated fairly. Systems which honor source pragmas can use
identical files for CMP_CK and CMP.

- CMPSP. This command file differs from CMP only in that it specifies a compiler
option to optimize space usage. On a compilation system which fully supports
PRAGMA OPTIMIZE, it is not necessary to adapt this file and CMP can be used.

- CMPDIFFNAMES. This command file differs from CMP in that it compiles a
test program into a different name than the name of the input file. It is used
on test programs which commonly fail to compile, so that a dummy version of a
test program can be created which will generate a well formed error message if
executed. This dummy version will be overridden if the compilation of the actual
program succeeds.

It is not necessary for a host system to provide a command file capability to execute
the ACEC. It is, however, much more convenient to run the ACEC on a capable host.
Command file processing permits:

- Repeatable operations - without worry about typing errors

- Automated collection of compilation time data

- Unattended operations - the user does not have to "babysit" a system

- Ease of use

" Compile and link all problems in the test suite, deleting units as they are no longer needed.
Many compilers store a compiled Ada program's syntax trees on disk to facilitate linking
and visibility to library units. To conserve resources, the ACEC library objects should be
removed from the Ada program library as soon as they are no longer necessary (after the
last step which used them).

" Execute the test suite, saving results into a file (if possible).

19

" Compile FORMAT. Run FORMAT on the file produced from the prior step.

" Perform all the above steps on all the Ada compilation systems of interest.

" Compile MEDDATACONSTRUCTOR. Run MEDDATACONSTRUCTOR using the
output from FORMAT as input. The package MEDDATA will be produced as output.

* Compile and execute the comparison program MEDIAN.

* Compile and execute the analysis program SSA.

There is some flexibility in the order in which the above steps can be performed. The test
programs in the test suite can be compiled and executed in any order. Many test programs
can compile and execute without package MATH (or DBLMATH). These could be run before
MATH is transported. See the Version Description Document (VDD) Appendix VII, "SYSTEM
DEPENDENT TEST PROBLEMS" for a list of those test programs that WITH package MATH.

There are two sets of command files on the distribution tape which can serve as models
that an ACEC user can adapt to the host operating system and compiler. The samples are
for DEC Ada under VMS, and for the MIPS compilation system running on a Silicon Graphics
IRIS-4D under UNIX (this compilation system is based on the Verdix Ada Development System)
- MIPS is not an acronym, it is the proper name of a company. The files with the suffix
".COM" on the distribution tape are the DEC Ada VMS version, and the files with the suffix
".UNX" are the Silicon Graphics version.

A user need not use these command files, or variations of them. The command files are
provided to simplify the effort in executing the ACEC against a compilation system. If a
compilation system has other methods for compiling and executing programs, they may be
used instead.

There is no dial-up help for users who run into difficulties in porting the ACEC. Assistance
is limited to the provision of this User's Guide, the Reader's Guide, and the Version Description
Document.

If difficulties in compiling Ada programs are encountered, it may be appropriate to contact
the vendor of the Ada compilation system, since the programs in the ACEC are "portable" Ada
programs. Difficulties in compiling and executing them should be reported to the organization
maintaining the Ada compilation system for explanation and correction. Such reporting should
be consistent with the classification then current on the ACEC - in particular, if the ACEC
Software Product is restricted for release within the government and government contractors,
then sending the "test suite" to a vendor is not proper.

The following figure shows the command files which will perform the steps noted above for
the DEC Ada compilation systems and can be modified for other compilation systems.

20

Compile Link and Run

Compile ACEC Compile Baseline

Setup-Test -Programs

Compile-Test Suite Cmp

CmpCk

Cm p-Sp

Cmp Diff Names

Run ACEC

Figilii 2: THE ACEC COMMAND FILES

21

Each of these steps will be elaborated later in this guide. The major purpose of each step
is:

" Compile Baseline

This file compiles the "foundation" or "baseline" of the ACEC Software Product. This
compiles the packages GLOBAL, either RAN32 or RAN16 (depending on the capabilities
of the target), and MATH and DBLMATH which are math libraries for 6 and 9 digit
floating point types respectively. In order to compile the math packages, depending on
the options selected and the software support of the implementation, the user may have
had to compile the packages MATH-DEPENDENT, DEPTEST, and GEN-MATH. Users
have a choice between different versions of GLOBAL and different ways of constructing
MATH. The command files must be adapted if the default choices are not what is desired.
These alternatives are discussed in more depth later.

" SetupiTestPrograms

This file compiles and links the programs MATHTEST and DBLMATHTEST which
verify the accuracy of the math library, and the programs TESTCAL1 and TESTCAL2
which verify the accuracy of the runtime clock using the interface provided by the package
CALENDAR.

" Compile-TestSuite

This command file compiles and links all the test programs. It deletes intermediate
objects from the program library as soon as they are no longer needed to conserve disk
space.

" RunACEC

This file executes all the test programs.

Many users may ask: How long is it going to take to compile and execute the ACEC test
suite? This is hard to answer, since there are sources of variability in estimating time. Some
of these variability sources are discussed below:

* Running the ACEC involves compiling all the test problems and support tools. The 334
performance test programs generate over a half million lines of source after INCLUDE
has been executed. GEN-MATH and the math test programs add approximately 27K
lines of source to be compiled and the support tools add another 20K. A system with
a slow compiler will take more time to process this source than a system with a fast
compiler.

e Some programs, in particular the math library, will need to be adapted to each target. It is
difficult to predict the time required for this adaptation since it involves review and under-
standing of the system documentation (for example, finding out what the floating point

22

representation is) and modification of Ada source for the package MATH-DEPENDENT.
The time required to make the adaptation also depends on the number of math pack-
ages that are or are not provided by the vendor. The ACEC user will need to learn
about the supported facilities - in particular the Chapter 13 features, including record
representation clauses.

" Users may uncover errors in the compilation system using the ACEC. Although for perfor-
mance comparisons, an ACEC user could treat such problems as "failed" and essentially
ignore them during cross system comparison, they may want to isolate and report errors
for correction as they are found.

The ACEC should be run only against validated implementations of Ada, However, even
validated systems can contain errors which may be detected by the code in the ACEC.
The ACEC does not include code intended to discover implementation errors - that is
the charter of the Ada Compiler Validation Capability project. During development and
testing of the ACEC, some of the test problems uncovered errors in implementations.
Where implementation errors were found, and in a few other places where it is simple
to include verification code, the test problems attempt to check that they have executed
correctly. All test problems which contain verification code will report an error when an
error is detected.

" It is quite possible that running the ACEC will be the first task an organization does with
a new system. This may be the case when an organization has obtained a compilation
system for evaluation. Programmers running the ACEC may be learning to use the
Ada compilation system and the host operating system by running the ACEC. It is
certain that a user experienced with the Ada compilation system and host operating
system (including using text editors, building command files or scripts, understanding
what cryptic diagnostic messages 'rcaully mean....) will be able to work through the
preparation phase of the ACEC much faster than a user with no prior experience on the
system.

* After being compiled and linked, each program must be executed. Before execution of the
program can occur on a cross-compiled target, the executable code must be downloaded
to the target. Depending on the available hardware (speed and error rate), downloading
can take longer than the time spent compiling and executing the test suite combined.

For comparison purposes, a DEC VAX station 3100 (which is roughly a 2.7 MIP processor)
with 16 megabytes of memory and a WORKING SET size of 4500 pages (1 page = 512 bytes)
of real memory on one implementation can run through the files to setup, compile and link all
the test problems in approximately 13 hours, and can execute the test suite in approximately
11 hours. These times were measured on an otherwise idle system.

23

The time to use the tools to extract the measurement data from the output of the ACEC
execution and process it through the analysis tool is fairly small, and should take less than an

hour on a system - although it does require working with system text editors and for a user

who is unfamiliar with an editor the time can be highly variable.
The amount of difficulty in adapting the math library and isolating errors as they occur

will be highly variable. Two weeks should be sufficient for most systems, but this will depend

on the system documentation, facilities supported, system debugging aids, etc. The ACEC

distribution tape includes samples of the package MATH-DEPENDENT which worked for

the trial implementations. These can serve as models, or may be usable without further

modification. If problems are encountered which require vendor support for correction, the

time required to use tihe ACEC can grow considerably.

24

2 APPLICABLE DOCUMENTS

The following documents are referenced in this User's Guide.

2.1 GOVERNMENT DOCUMENTS

MIL-STD-1815A Reference Manual for the Ada Programming Language (LRM)
1983

2.2 NON-GOVERNMENT DOCUMENTS

D500-12471-1 Ada Compiler Evaluation Capability (ACEC)
Technical Operating Report (TOR)
Reader's Guide
Boeing Military Airplanes
P.O. Box 7730
Wichita, Kansas

D500-12472-1 Ada Compiler Evaluation Capability (ACEC)
Version Description Document
Boeing Military Airplanes

Improving a Poor Random Number Generator,
C. Bays and S. D. Durham,
ACM Transactions on Mathematical Software,
Volume 2, Number 1, March 1976.

Introduction to the Theory of Statistics,
A. Mood and F. Graybill, McGraw Hill. 1963.

The Need for an Industry Standard of
Accuracy for Elementary-Function Programs,

C. Black, R. Burton, and T. Miller,
ACM Transactions on Mathematical Software,
Volume 10, Number 4, December 1984

25

3 TEST SUITE PREPARATION

Most of this guide deals with programs which do not require special equipment or operator
intervention to run. The vast majority of the programs in the test suite fit in this category.
However, there are a few "exceptional" programs which require special handling. Refer to
Section 3.2.7 on Exceptional Tests for details.

3.1 INSTALLATION

This section will guide the user in installing the ACEC test suite. This job is system dependent,
but some general guidance is possible and more detailed instructions are provided for two widely
available operating systems: VAX VMS and UNIX.

Test problem file names are unique and limited to 8 characters, permitting the test suite
and support tools to run on a host with a "flat" file system without a hierarchical directory
structure. The only requirement is that, in addition to the storage space for the Ada compilation
system being tested, there must be sufficient secondary storage space available for the ACEC.
How much space is required varies greatly between software implementations due to the usage
characteristics of the host system, but the following information on disk space requirements
can be used for planning purposes:

" Disk usage for source files:

The ACEC source requires approximately 9 megabytes of disk space (6.9 megabytes for
the performance test source files, 1.1 megabytes for the ACEC documentation (Guides
and VDD), and the rest for the support tools.) It is not necessary to keep all the source
files online to run the ACEC. An ACEC user could run the performance tests by reading
the source for test programs as needed and deleting them after they are compiled, greatly
reducing the peak disk space usage.

" Disk space for Ada program library use for the performance tests:

ACEC observed the disk space needed for peak usage to be in the range of 2 to al-
most 4 megabytes. Long term library storage is required for packages GLOBAL, MATH,
DBL MATH, RAN and INCLUDE. The intermediate files for the performance test pro-
grams are deleted as soon as the programs are linked to minimize disk usage.

* Disk usage for executables:

ACEC observed the total usage to be in the range of 13 to approximately 100 megabytes.
By executing and then deleting a test program's executable, the peak disk usage is greatly
reduced. Approximately 1.1 megabyte should be sufficient for the largest program to
compile and execute.

26

" Disk usage for output data files:

Typical sizes for the output data files are listed below:

- COMPILEACEC-LOG .90 megabytes

- COMPILETESTSUITE .23 megabytes

- RUNACECLOG .75 megabytes

* Memory usage for performance tests:

The majority of the programs will run on a 1750A with 64K 16-bit words.

In addition to the disk space guidelines, the following information on time allotment to
execute the ACEC product can also be used for preliminary planning:

* Preparation time:

The time required to adapt the ACEC to a particular implementation varies with the
characteristics of the compilation system and the experience of the ACEC user on the
system being evaluated.

" Time for compilation of the performance tests:

Essentially, it is the time to compile 500,000 lines of code. For a compiler operating at
500 lines per minute, this will take just under 17 hours.

" Time for execution of performance tests:

This varies greatly between systems and compilation options selected. For an exam-
ple, it took 17 hours to execute all the performance tests for one compilation system
on a VAXstation 3100. The time may be MUCH slower for embedded targets due to
downloading.

* Total time:

As a rough estimate to aid preliminary planning, one programmer should be able to install
and run the complete ACEC test suite and assessors in less than 4 weeks, if there are at
least 20 megabytes of free disk space. The amount of time varies with the experience of
the programmer, the reliability of the system being tested, and the amount of free disk
space. Analysis of results and isolation of errors can be very time consuming and are not
included in the time estimates. It is possible to run subsets of the ACEC tests in less
time.

27

3.1.1 VAX VMS

This section explains how to install the ACEC test suite on one VAX VMS hosted system.
The procedure under VMS proceeds as outlined in Section 1.4. The user must adapt the

*.COM files to reflect the directory names of their account. For compilers other than DEC Ada,

the commands to invoke the compiler and manipulate the Ada program library system must
be adapted to the demands of the compilation system being evaluated. It may be necessary to
modify the procedure to satisfy special requirements of particular compilation systems.

On systems with limited available space it may not be possible to retain all the executable
files created by COMPILE TEST SUITE.COM to execute them in one block after all perfor-

mance tests have been compiled. On such systems, it may be necessary to modify COM-
PILETESTSUITE.COM to execute each test program (preferably at least twice to observe
variability) and then delete the executable file to conserve disk space.

3.1.2 UNIX

This section tells how to install the ACEC test suite on a UNIX hosted system. Bourne shell
scripts are presented which compile and execute the ACEC on one UNIX hosted system.

The procedure under UNIX will also proceed as outlined in Section 1.4. The ACEC must

adapt the script files to reflect the directory names on the system being tested. The commands
to invoke the compiler and manipulate the Ada program library system must be adapted to the
compilation system being evaluated. ACEC users should expect to adapt the scripts to their

UNIX implementations - the sample UNIX scripts use straightforward Bourne shell operations
analogous to the VMS command files, but this has not been sufficient to avoid implementation
dependencies. Bourne shell scripts were used rather than "C shell" scripts to try to increase
the portability of the scripts to other implementations. All UNIX implementations are reported

to support the Bourne shell, but not all support the "C shell."

3.2 PREPARATION

This section discusses the steps which should be performed prior to compiling the ACEC test
suite to insure that meaningful results are obtained. It also discusses some of the problems
which may be encountered in transporting the ACEC to a new compilation system. The
documentation for the Ada compilation system being tested should be consulted for specific
details.

The ACEC Software Product was developed under the working assumption that the entire
Ada language is supported. The ACEC source code does not deliberately restrict itself to a
subset of Ada in either the test suite or the support tools. Some test programs, and some tools,
may fail to compile (or to execute properly) on systems not supporting full Ada. For example,
some tasking test programs (DELAYS, TASK44, and TASK45) will not terminate normally if

28

the underlying task scheduler does not recognize pre-emptive priorities. Some test problems
use floating point types with 9 digits of precision, which not all implementations will support

(GAMM2, KALMAN, LOOP3, S0301T15, S0316T30). Some test programs use PRAGMA
PACK to the bit level and unchecked conversions between integer types and packed boolean
array types to perform bit manipulation on integer types (DES7 and S0500T12). In these
cases, the failure of an implementation to support the feature may result in a few test problems
not being able to execute. On the other hand, if an implementation provided no support for
tasking (including omitting the DELAY statement) then none of the test suite would run, since
a DELAY is used in the timing loop code. It may be possible to work around some limitations
of an implementation. This is discussed in the following subsections.

Areas of Ada where the ACEC problems may need user adaptation are:

* Definition of type GLOBAL.BIGINT is derived from the predefined type INTEGER. On
systems where INTEGER does not have sufficient range (more than 16 bits) it will be
necessary to modify the definition in GLOBAL to derive the type from LONG-INTEGER.

" The variables GLOBAL.EXCESSIVE-TIMEWARNING and GLOBAL.EXCESSIVE-TIME
are used to limit test problem execution time and restrict the total time used to execute
an individual test problem. The defaults are that the system will print a message after
five minutes when the timing loop gains control and the problem is not terminating (so

that users can tell that the problem is not in an infinite loop) and will terminate execution
after thirty minutes. These numeric values can be adapted by users as desired.

Setting these values will not provide a fine grain limitation on each test problem, because
the elapsed time is only checked after control flow passes normally into the timing loop
code. If a test problem executes for twenty minutes, when it returns after the first
execution, it will print one warning message, and after the second execution (that is,
after forty minutes) it will stop.

Refer to the Reader's Guide, Section "DETAILS OF TIMING MEASUREMENTS", for a
discussion of the timing loop.

* An ACEC user wanting to measure CPU time will have to adapt the function CPUTIME-CLOCK.
Refer to Section 3.2.3.2 for more discussion.

* The function GETADR may need to be adapted. Refer to Section 3.2.5.1 for more
discussion.

" The variable GLOBAL.TIMER-TOLERANCE specifies the requested accuracy of the ex-
ecution time measurements. It is defaulted to five per cent, but can be changed if

desired.

" The array GLOBAL.T-VALUE specifies the statistical confidence levels. These can be
adapted by a user if desired. The adapting user will require access to statistical tables.

29

" Tying tasks to interrupts.

Here the LRM permits each implementation to define the meaning of the value in the
USE AT clause.

" Using programmer specified task scheduling.

Although not required by the LRM, many implementations provide a way for users to
specify how equal priority tasks should be scheduled; whether to use run-till-blocked
scheduling or time-slicing, or to specify a value for the time-slice quantum. The ACEC test
programs DELAY1 3 and DELAY4 6 direct the user to modify the program and/or linkage
procedure (if possible) to specify a particular scheduling discipline. The distributed source
contains a deliberate error so that it will not compile without the user explicitly reviewing
and modifying the test program. The test suite provides tests for this implementation
dependent feature because:

- Knowing whether a system permits programmers to specify scheduling discipline is
a fact of independent interest to some ACEC users.

- By constructing alternate versions of some programs which specify different schedul-
ing disciplines, it is possible to derive information about the task scheduling over-
head, which would not otherwise be available. It is possible to calculate the overhead
for a task switch when time-slicing between equal priority tasks is supported and
a user can request an alternative task scheduling discipline for comparison. This
information is of interest to some ACEC users.

Different implementations which support the capability provide different ways for a pro-
grammer to request it - some use an implementation defined pragma, some a linker
directive, some a call on an implementation defined runtime system routine.

In all of these examples, an ACEC user may chose not to perform the adaptation. They may
not be interested in the features being tested, may be unable to perform the operations, or
may not have time to adapt the programs. Where results are unavailable, the user will record
these test problems as implementation dependent.

3.2.1 Input. / Output

The ACEC outputs strings containing numeric results of performance tests. If TEXT 10 and
FLOAT-1O are not supported, the results of the tests cannot be displayed without modification
to the timing loop code. The user trying to run Ada programs on a new system should run a
"Hello, World" program to insure that simple string output is working. This is a program which
uses TEXT 10 to output a simple string such as "Hello, World". If FLOAT 10 is not directly
supported, users will have to develop workarounds. Some alternatives have been developed on
other systems.

30

If the Ada system supports a complete version of the Text-lO package, this requirement
will cause no problems. However, some Ada compilers targeted to real-time systems (where
the hardware is limited) may limit their I/O facilities. A user may have to write a floating point
to a text-string conversion routine.

For bare machine implementations of Ada, the effort required to get TEXT -10 to work well
enough to output results of the timing and sizing measurements on a console can be large.
Portions of the Ada runtime library may need to be modified, I/O device drivers may need
to be written and tested. It would be possible (but painful) to use a debugger to extract the
performance measurement data. A user could provide stubbed versions of the I/O subprograms,
and then set a breakpoint in these dummy subprograms and then use the debugger commands
to examine what would have been output if the "real" I/O subprogram were present.

3.2.2 Global Package

There may be modifications necessary to the package GLOBAL to adapt it to another imple-
mentation. The sample command file COMPILE-BASELINE indicates where changes should
be made.

" The command file COMPILE-BASELINE is distributed with three options for the timing
loop code, corresponding to the CLOCK, CPU, and SIZ alternatives, two of which are
"commented out." These example alternatives in COMPILEBASELINE.COM help in
adapting to another compilation system.

" To measure CPU time, it will be necessary to use the version of GLOBAL and the timing
loop code (INITTIME, STARTIME, STOPTIMEO, and STOPTIME2) with the suffix
".CPU" This is accomplished by compiling GLOBAL and overwriting the timing loop
code files with suffix *.TXT with the corresponding *.CPU versions. The timing loop
code files with suffix *.CLOCK contain the code to measure elapsed time. The *.CPU
versions will collect performance measurements using calls to a user defined function
GLOBAL.CPUTIMECLOCK. The user must replace the function CPUTIME-CLOCK
(in the source file GLOBAL.CPU) with one specific to the implementation they are testing
which returns the job elapsed CPU time as a value of type CALENDAR.DURATION.
The version distributed with the ACEC may be used as a model for constructing such a
function for other systems.

" If the system does not support an integer type with at least 32 bits of precision. the
declaration of the type "BIGINT" and "BIGNAT' will not compile and must be removed.
Also, the test prubiems which use this type will fail at compile time.

* If the system does not support a floating point type with 9 digits of precision, the
declaration of the type "DOUBLE" will not compile and must be removed. Also, the
test problems which use this type will fail at compile time.

31

9 The function "ADDRESS TO-INT" converts a value of type SYSTEM.ADDRESS to an
integer type. This function is used to compute the code expansion sizes by subtracting
the address values of two label'ADDRESS attributes (or of two type ADDRESS variables
obtained by a GETADR function). On different systems, SYSTEM.ADDRESS'SIZE will
differ, forcing a modification to the return type of this function.

3.2.3 Tiiiing Considerations

The INCLUDE tool is used to insert the timing loop code into the test suite so that any
change(s), if necessary, only have to be made in one place. For more information, refer to
Section 4.3.

An ACEC user may decide to collect timing measurements either using CALENDAR to
measure elapsed time or an implementation dependent function to measure CPU time. These
options are discussed below.

3.2.3.1 Caleiilar

The elapsed timing measurements are performed using the function CLOCK in the pre-
defined package CALENDAR. CALENDAR must work accurately for the timing loop code to
function. It is tested with the programs TESTCAL1 and TESTCAL2. These programs print out
a count of elapsed minutes whenever the minute changes for 15 minutes (or until the process
is aborted by the user). The ACEC user should verify that a line is generated every 60 seconds
using a (stop)watch. Some error is tolerable, but most systems should show no discernible
error. A one second drift in two minutes is less than a 1% error. While this magnitude of error
is small enough to permit the ACEC to collect reliable measurements, it would be intolerably
large for many ultimate applications.

If CALENDAR.CLOCK doesn't work, the ACEC user should get it fixed before proceeding.
The first thing to check is that the Ada system has been properly installed.

During development of the ACEC, several systems were observed which had gross errors in
CALENDAR - one had a 70 second minute, and one measured minutes passing as fast as the
system could print. On one 1750A system, the clock never advanced. This turned out to be
due to a hardware error which was corrected by modification of the system initialization code.

The ACEC Software Product is set up to measure elapsed time as a default. The ACEC
user can modify this to measure CPU time, if desired, as described in Section 3.2.3.2, "CPU
Time Considerations."

3.2.3.2 C'PT Time Considerations

An ACEC user can choose to run the timing loops using CPU time rather than elapsed
time. To do so, the version of the included files INITTIME.CPU. STARTIME.CPU, STOP-

32

TIMEO.CPU, and STOPTIME2.CPU should be renamed with a .TXT suffix and GLOBAL.CPU
should be compiled instead of GLOBAL.CLOCK. The separate function CPUTIMECLOCK
will need to be replaced with code which queries the Ada runtime environment and returns the

CPU time as a value of the predefined and system dependent type CALENDAR.DURATION.
To use CPU time measurements, it is necessary that the target environment maintain job CPU
- many general purpose, multiuser operating systems do provide for the collection of job CPU
time data for billing purposes. Few bare machine targets do so. It will not be possible to collect

CPU time measurements when the underlying environment does not track CPU time.
Using CPU time will permit the collection of measurements on multiprogramming target

systems without having to shut the system down to eliminate contending jobs. CPU time
measurements will not be (greatly) affected by the presence of concurrent users, as elapsed
time measurements are. If CPU times are desired, it is possible to execute the ACEC test
suite without requiring the exclusive access that elapsed time measurements require. For most
test problems, a CPU time measurement is a good approximation of the elapsed time it would
take to execute the test problem on an unloaded system. When this is true, using CPU
time measurement is a data collection technique which attempts to simplify the gathering
of performance measurements. However, for several classes of programming constructions

of particular importance to mission critical computer resource applications, CPU time is not
comparable to elapsed time on an unloaded system. During I/O operations and DELAY
statements the CPU can be idle before the execution of the statement is completed. A real
time system may need to do an I/O operation and wait until it is completed to proceed. The
CPU time may be much less than the elapsed time, but operators waiting on the application
must wait in real time. Similarly, a real time control system is unconcerned with CPU time.

Operating systems which maintain CPU time information have traditionally done so for the
purpose of accounting systems and charging. It is not necessary for these purposes to allocate
time with extreme precision. For example, some systems may consider all process scheduling
operations to be system overhead. The CPU timer may charge all scheduling operations to
overhead or to the job which was executing when the event which triggered the scheduling
occurred (I/O interrupt, delay expiration, ...). An Ada implementation which assigns each Ada
task to an operating system process will not accurately reflect the "true" cost of tasking on

the system.
Measurements for CPU time and elapsed time for DELAY statements and I/O opera-

tions should not be directly compared since they are measurements of fundamentally different
quantities. CPU time measurements of tasking problems may be suspect.

On bare machine targets, elapsed time measurements are the appropriate metric to collect.
The following figure is an example of a function which will access CPU time.

33

- This function was developed by the ACM-SIGAda.PIWG (Association for Computing
- Machinery. Special Interest Group on Ada. Performance Issues Working Group)
- It is their program A000012. This version is compatible with DEC VAX Ada.
- calling on the VMS System Service routine "$GETJPI". Refer to VAX/VMS
- System Services Reference Manual. Order No. AA-Z502C-TE for more information.

- The Ada function has a return type of DURATION.

- A common implementation technique introduced errors in using CPU time for
- timing measurements. One field in the Task Control Block (TCB) will
- represent cumulative CPU time. but is only updated on task scheduling.
- A system call which returns the field from the TCB will ignore the time
- the task has expended in the current quantum (that is. since last scheduled).
- This would appear to a program is a clock which "stutters", keeping the
- same value for a relatively long ine and then updating itself by several
- "ticks" at one time. So- .'n ock can keep long term accuracy, but programs
- using it must accommoda e substantial amounts of jitter. To compute current
- CPU time. the tir , last initiation of the task should be added to the
- value stored in thp" ..B. If the built in system call does not do this.
- a user can. If not done. the ACEC timing loop will compute a larger than
- otherwise tecessary value for the jitter compensation time, and the
- time to execute the test suite will be longer than it needs to be.
- Accuracy should not be seriously degraded. The VMS system call performs the
- desired compensation.

with SYSTEM: use SYSTEM:
with CONDITION-HANDLING: use CONDITION_-HANDLING:
with STARLET: use STARLET:

separate (Global)

function CPU TIME CLOCK return DURATION is

CPUTIM : INTEGER:
pragma VOLATILE (CPUTIM):
JPI-STATUS : COND-VALUE-TYPE:
JPI ITEM LIST ! constant ITEM LIST TYPE

((4 . JPICPUTIM , CPUTIM'ADDRESS, ADDRESS.ZERO).
0. 0 . ADDRESS ZERO . ADDRESS ZERO)):

CPU TIME AS DURATION : DURATION:
begin

- Call GETJPI to set CPUTIM to total accumulated CPU time
- (in 10-millisecond tics)

GFTJPI (STATUS => iPI.STATIIS . ITMI ST =. JPI ITEM I ICT):
CPU TIME AS DURATION := DURATION f LONG FLOAT (CPU IIM) / 100.0):

return CPU_TIME-ASDURATION:

Pnd CPUTIME-CLOCK:

Fiiiir'.3: CPUTIMECLOCK FOR DEC ADA

34

3.2.3.2.1 How Test Problems Are l'easurecl

An ACEC user will not generally have to understand the details of the techniques used
to obtain timing measurements. However, it is possible that on a new system, the timing
loop code will fail and the ACEC user must understand it enough to fix it. The Reader's
Guide, Section "REQUIREMENTS OF THE TIMING LOOP CODE", contains an additional
discussion of the design requirements for the timing loop.

Each test problem is measured by "plugging it into" a template which will, when executed,
measure and report on the execution time and size of the test problem contained within it.

The timing loop code consists of four (4) code files (INITTIME, STARTIME, STOPTIMEO,
and STOPTIME2) which are incorporated into the source by a preprocessor (INCLUDE) which
performs text inclusion. The body "INITTIME" is included once per program and contains
code to initialize the timing loop variables (as discussed later in this section). The other code
files bracket each test problem to be timed, provide a place for writing an identification of the
test. compute the execution time and code expansion size of the test problem they enclose,
and output the measurements obtained.

The general form for all test programs is:

35

with global; use global;
with calendar; use calendar;

-- declarations

begin
-- initializations can go here

pragma include ("inittime"); -- once per program
-- or initializations can go here too

pragma include ("startime"); -- first test problem

-- test problem code goes here
pragma include ("stoptimeO");

put(".); -- name and description goes here
pragma include ("stoptime2");

pragma include ("startime"); -- second test problem
-- test problem code goes here

pragma include ("stoptimeO");
put("..."); -- name and description goes here

pragma include ("stoptime2");
-- additional test problems enclosed by
-- startime / stoptimeO / stoptime2 follow

Fi,,ii u 4: TIMING LOOP TEMPLATE

36

The "..." after the PRAGMA INCLUDE(" Inittime") is replaced by the initialization code

for the problem (if any); the "..."after the PRAGMA INCLUDE("startime") is replaced by the
test problem to be timed, and the ". after the PRAGMA INCLUDE("stoptimeO") would be
replaced by a PUT (or a sequence of PUT-LINE and PUT statements) which prints the
problem name and an English description of the problem. It is appropriate to include lists of
related tests and the purpose of the test.

The purpose of each of the included files is as follows:

" INITTIME. This code initializes the timing loop variables and computes the execution
time and code expansion space for the null loop. It is executed once per program. If it
is included in a program twice, there is likely to be a compiler error because it defines
labels which cannot be duplicated within an Ada program.

" STARTIME. This code is the beginning of the timing loop.

" STOPTIMEQ. This code is the end of the timing loop.

" STOPTIME2. This code outputs the measurements collected on the current test prob-
lem. This is a separate piece of code to permit the including of problem specific output
text.

There are two conditions where an ACEC user could consider modifying the timing loop
code for better system performance, relative to the clock vernier (refer to the Reader's Guide,
Section "CLOCK VERNIER", for discussion). On target systems with highly precise system
clocks (on the same order as an instruction time), the vernier is superfluous and will simply
make the test programs larger to compile without increasing the accuracy of the measurements;
in fact some error will be introduced by the vernier on these systems. Also, on target systems
where CALENDAR.CLOCK (or the CPUTIMECLOCK function when the user is measuring
CPU time rather than elapsed time) is so slow that the system clock will tick many times in the
time required to execute the function, the vernier computation will not increase the accuracy of
the timing measurements. On such target systems, the use of the vernier makes the ACEC test
programs larger and take more time to compile and execute. Measurements on such targets
would be better with a simpler timing loop. The ACEC does not distribute a version of the
timing loop with this modification for several reasons:

" Such targets are not currently in common use.

" Distributing modified timing loop would complicate the ACEC instructions.

" The relative cost advantage gained by not using a vernier on such targets is not large.
Simplifying the timing loop will reduce the amount of code presented to an Ada compiler,
making compilation times between different systems less directly comparable. This would
be important for small test programs where the timing loop code is larger than the rest
of the program.

37

* An ACEC user who wants to modify the timing loop to avoid the vernier should be
able to do so after reviewing the discussions in the Reader's Guide, Section "CLOCK

VERNIER", and the source code. If desired, an ACEC user could replace the entire

timing loop with another mechanism. The use of INCLUDE to insert the timing loop is

intended to simplify such modifications if needed.

There are three versions of the timing loop files with different suffixes. The differences
between them are listed below:

" CLOCK.

This is the version for collecting elapsed time measurements.

" .CPU

This is the version for collecting CPU time measurements.

* .SIZ

This is the version which includes a call on a GETADR routine to measure code expansion

sizes on systems which do not support the label'ADDRESS clause. It uses elapsed clock
time for measuring time.

The command file COMPILE-BASELINE is set up to copy a set of timing loop files from

*.CLOCK files to *.TXT files. Commented out options will copy other sets of timing files

to *.TXT files. To select another option, the user should make the obvious adaptations.

INCLUDE will insert the files named *.TXT into the test program.

3.2.4 Math Package

The ACEC test suite and analysis tools require a math library of elementary functions. Many

MCCR applications will use elementary math functions, as do the ACEC analysis tools. A vali-

dated Ada system is not required by the LRM to provide a math package. The ACEC provides
a portable implementation of a math library to permit execution on compilation systems which
do not provide any math library support.

For the second release the ACEC test suite and tools use a compatible subset of the

Association for Computing Machinery, Special Interest Group on Ada. Numerics Working Group
(ACM SIGAda NUMWG) proposed specifications for an elementary math function library. The

math library used in the second release differs from the math library used in the first release

in the spellings of function names, the use of default parameters, the treatment of exceptions,

and the removal of some functions in GEN-MATH which are not defined in NUMWG.
There are four approaches to adapting MATH, listed in decreasing order of preference.

Each will be discussed in more detail in the following sections. The command file COM-
PILEBASELINE.COM contains these four options, with three being "commented out." This

38

command file shows which units need to be compiled (and tested if appropriate) to produce a
version of MATH for a new compilation system. ACEC users will need to tailor one of these
options if they choose to use the vendor supplied math library. The version of MATH created
by COMPILE-BASELINE will be tested by the MATHTEST program, which is compiled in the
SETUP TEST PROGRAMS command file. The differences in the MATH packages can affect
performance.

The ACEC uses the NUMWG package specification and recommends using the vendor's
math library where it is available. The ACEC provides a portable version of a math library for
use on systems which either do not provide a math library or where the provided math library
is not adaptable. For example, the functions in the provided library may not be sufficiently
accurate for project use. The performance degradation resulting from not using an optimized
target specific math library can be considered a performance penalty applied against a system
for jiot providing a math library.

" Where possible, instantiate the system provided version of the NUMWG package
GEN ERICELEMENTARYFUNCTIONS.

Where a compilation system provides a NUMWG package, it can be directly instantiated.
Most projects would be expected to use this alternative where it is available. Where this
alternative is available, execution times can be fast because the body of the package can
be tailored to the target hardware.

* Where possible, interface with an implementation provided non-NUMWG math library.

Where a compilation system provides a math library which is not compatible with
NUMWG recommendations, adapt MATH and DBL MATH by providing bodies for the
functions which "pass-through" calls to the provided non-NUMWG library.

Where this alternative is available, execution times can be fast because the procedures
might be implemented as interfaces to highly optimized routines which are tailored to
the target hardware.

Because there is no Ada language requirement to support a NUMWG package, a system
which does not support it should not necessarily be downgraded unless the ACEC users
have other requirements which suggest that support for a NUMWG package is desirable.

" Use GEN MATH with MATH DEPFr!DENT PORT.

The ACEC has developed a portable math package for use on systems which do not
provide a usable math libcrary.

Instantiating this package to implement MATH should involve the least user effort on
systems which do not implement the NUMWG recommendations. The performance of
this option will probably be slower than for systems where the implementors have provided
math packages tailored to target hardware.

39

Before compiling MATH.PORT, the user should verify that the MATH-DEPENDENT
package is working by running the package DEPTEST.ADA. This package is discussed
in more detail in the next section.

* Use GEN-MATH with a version of MATH.DEPENDENT tailored to the target system.

Tailor a target specific version of MATH DEPENDENT. The program DEPTEST can be
used to verify correct execution. Then use MATH DEPENDENT to compile the generic
package GEN-MATH (which depends on MATH-DEPENDENT) and use GENMATH.ADA
to compile the packages MATH.PORT and DBLMATH.PORT - these units instantiate
GEN MATH.

GEN-MATH contains functions which will deliver accurate results for floating point base
types where GLOBAL.DOUBLE'MACHINE MANTISSA is as large as 60 bits. ACEC
users evaluating systems where DOUBLEMACHINE MANTISSA is larger than this will
either have to use vendor supplied libraries or adapt GEN-MATH and provide higher
accuracy implementations of the functions. It is not expected that this will be a significant
problem - there are systems which provide floating point types with more than 60 bits
of mantissa, however typically they support several intermediate length types so that an
Ada type declared with nine decimal digits of precision will be mapped to a hardware
type with 60 or fewer bits of mantissa which is all the ACEC demands. The ACEC math
library is not designed to provide support for any type with more than 60 bits of precision.

There are several versions of MATH (and DBL MATH) compilation units, distinguished by
their suffix, as follows:

" MATH.ADA - version assuming NUMWG support.

* MATH.DEC - version which a user will adapt to pass-through function calls to an
implementor provided non-NUMWG math library. The sample implementations provide
interfaces to a FORTRAN math library and can be easily adapted to other systems which
access a similar library.

* MATH.PORT - version using the ACEC provided GEN-MATH package.

The command file COMPILEBASELINE.COM contains alternatives which compile MATH
and DBL MATH using the different approaches. One is used and the others are presented
as comments. An ACEC user adapting to another compilation system could use any of the
alternatives as a model.

In each case, after developing a version of MATH and DBLMATH, the user should verify the
correctness of these packages by executing the programs MATHTEST and DBL MATHTEST.
These programs report the numeric accuracy of the math functions. If the results of these
tests indicate significant loss of accuracy, the user should investigate - the adaptation of

40

MATH-DEPENDENT may be incorrect, or the compiler may contain errors which should be
isolated before proceeding with an evaluation.

This verification is important even when a vendor math library is used without modifica-
tion. As reported in "The Need for an Industry Standard of Accuracy for Elementary-Function
Programs," by C. Black, R. Burton, and T. Miller in ACM Transactions on Mathematical Soft-
ware, Volume 10, Number 4, December 1984, there are inaccuracies in the subprograms for
the elementary mathematical functions provided by computer manufacturers. This is a serious
problem because many computer users assume that they are working with reliable routines and
simply accept supplied packages without testing. This topic is discussed in Section 3.2.4.3.

The ACEC test suite and tools do not use all the functions and features of the NUMWG
specifications. These functions are not provided in the portable package GEN-MATH. The
NUMWG functions which are not required are:

" The hyperbolic (and inverse hyperbolic) functions

" The trigonometric (and inverse) functions with a cycle parameter

" The logarithm function with a base parameter

" The COT function

If the GEN-MATH package is instantiated with a constrained type, it will not operate as
a NUMWG conformant would - it may raise an error when any intermediate variable in a
computation is out-of-range, rather than only when initial or final values are out-of-range.

The specifications for the GEN-MATH package have been changed from the first release
of the ACEC to make it compatible with the NUMWG recommendations. Users who have
built personal test problems using MATH or DBL MATH will have to adapt these problems to
use the modified package GEN-MATH. The changes made to GEN-MATH (and the programs
which call on it) were:

• The spellings of the following function names were changed as indicated:

LN to LOG

ASIN to ARCSIN

ACOS to ARCCOS

ATAN2 to ARCTAN
ATAN to ARCTAN

(ARCTAN has two parameters, the second
parameter has a default value of 1.0,

making it serve for both ATAN and ATAN2)

41

" The functions MIN, MAX, and SGN were removed from GEN-MATH because they are
not part of the NUMWG specifications.

Versions of these functions are now defined in GLOBAL for the types GLOBAL.REAL,
GLOBALDOUBLE, GLOBAL.INT, and GLOBAL.BIGINT for the use of the ACEC pro-
grams which need them.

" GEN-MATH was modified to raise the NUMWG defined exception ARGUMENT-ERROR
where appropriate, instead of NUMERIC-ERROR as it had done.

" GEN-MATH was modified to follow NUMWG recommendations with respect to behavior
of functions at boundary conditions. For example, following the NUMWG recommenda-
tions, the evaluation of LOG(O.0) should raise ARGUMENT ERROR; in the first release
of the ACEC, GEN-MATH returned the largest negative value for this input.

The functions required by the ACEC test suite are:

•"'"' The power function, raising a real number to a real exponent.

" ARCCOS. The trigonometric arc cosine.

* ARCSIN. The trigonometric arc sine.

" ARCTAN. The trigonometric arc tangent.

* COS. The trigonometric cosine.

" EXP. The exponential function.

" LOG. The natural logarithm.

" SIN. The trigonometric sine function.

* SQRT. The square root function.

* TAN. The trigonometric tangent function.

The ACEC provides two programs (MATHTEST and DBL_MATHTEST) to test the ac-
curacy of the math packages. These should be run to insure that the math libraries are
performing correctly. These test programs might reveal accuracy flaws in a vendor library, or
flaws in adapting the ACEC generic math package to a new target. For the ACEC test prob-
lems, it is sufficient if the math library is not grossly inaccurate - say not losing more than 10
bits of accuracy. However, the ACEC user should carefully examine the accuracy requirements
of their applications before using a math library which is not essentially accurate to target
machine precision. The NUMWG has recommended accuracy standards for the elementary

42

math functions in terms of permissible maximal errors over various ranges - the MATHTEST
and DBL MATHTEST programs compare the observed errors against this standard and report
if it is exceeded. The NUMWG also recommends that the value of functions for some spe-
cific values (usually for zero) be precise - the MATHTEST and DBLMATHTEST programs
compare the calculated results for these values to the recommend values.

The remaining subsections will discuss in more detail:

" Alternative methods to construct MATH and DBL MATH packages.

" Testing of MATH and DBL MATH packages.

3.2.4.1 Alternative methods for MATH

The following sections discuss details of the alternative methods of providing a MATH
package.

3.2.4.1.1 Instantiate system provided NUMWG package

Where provided, a NUMWG package should be straightforward to instantiate and efficient
to use.

3.2.4.1.2 Adapting to an existing non-NUMWG inath library

This alternative involves providing a package which "passes-through" a function call by
interfacing to an implementor provided routine, mapping name changes, exception processing,
and argument definitions as required. The following code shows how this would appear for the

ARCTAN function on DEC Ada.

with global; use global;

package math IS

argument-error : exception

function arctan (y: real; x: real := 1.0) return real;

end math;

43

with math_lib;
package body math is

package vms.math-lib is new math-lib(real)

function arctan (y: real; x: real := 1.0) return real is
begin

if x = 1.0 then

return vms-math-lib.atan(y);

else
return vms_math_lib.atan2(y,x);

end if;
exception
when others => raise argument-error;

end arctan;

end math;

It might appear that by promoting the use of an implementor provided math library (whose
body is probably not written in Ada) that the ACEC test problems which call on math func-
tions would not be performing comparable tasks on different systems. In general, a fair test
problem would execute the same Ada source on all systems being compared. However, it has
been traditional for languages which have specified a math library (such as FORTRAN) for
implementors to provide users with interfaces to a math library which is not always written in
the source language - there is often one optimized version of a math library which all lan-
guages reference. It is anticipated that Ada implementors will follow this tradition and provide
math libraries. If a standard package specification is adopted by the different implementors,
it will be simple to transport applications If and when this happens. applications which use
elementary math functions and are concerned with performance will use the provided math
libraries (without regard for what language the bodies of the math packages are written in)
and the performance of a system executing a version of math functions coded in portable Ada
would be of little intrinsic interest. Even now when not all implementations provide access to
math libraries from Ada, for those which do, it is the performance of these libraries which is of

44

most interest to users because they are the libraries which will be used in performance sensitive

applications. For applications concerned with portability, there will have to be a simple way to

interface with the provided libraries and to verify their accuracy.
For a compilation system which provides a math library which does not contain all the

functions the ACEC test suite requires, an ACEC user might: adapt the ACEC portable math

library to provide the missing functions (and access the implementor library for the functions

which are provided); use only the portable math library; or use the implementor library and not

run the test programs which use the unsupported functions. An implementor provided math

library might not handle exception conditions in a comparable manner - rather than raise an

exception for an invalid argument (as the ACEC portable math library does) it might crash the
program. Such behavior complicates the task of interfacing the ACEC test suite to an external

library and can make the MATHTEST program, for one, impossible to execute without source

code modifications.
An ACEC user can construct a version of MATH (or DBLMATH) with interfaces to a

vendor provided math library by writing a package MATH (or DBLMATH) which specifies
the functions and provides bodies for each which return the value of a call on the appropriate

vendor library function.
An example of such an adaptation for the DEC Ada compilation system is provided on the

distribution tape in the files MATH.DEC and DBLMATH.DEC.

If an implementation provides an elementary function library in a package named MATH,

it will be awkward to use this approach because defining the package MATH to be used in

the test suite will override the definition of MATH provided. A user may be able to copy the

source of the provided math library and rename it, or may be forced to modify the source of

the ACEC programs which reference the package MATH (to name a package with a different

spelling, permitting MATH to be reserved by the implementation).

3.2.4.1.3 GENMATH with portal)le MATH_-DEPENDENT

To provide a math library for target systems which do not provide one, the ACEC distributes

a portable version of a generic math package which can be readily adapted to additional targets.

The math package provided is based on the book Software Manual for the Elementary

Functions by William J. Cody, Jr., and William Waite, published by Prentice-Hall in 1980.
The ACEC math packages MATH and DBL MATH depend on two generic packages:

* MATH-DEPENDENT:

This is a representation dependent generic package which provides functions which permit

the manipulation of fields of floating point numbers. It is instantiated using the declared

types.

It is discussed in more detail later.

45

* GEN.MATH:

This is a generic package which instantiates MATH-DEPENDENT and contains the
algorithms for the supported elementary math functions.

The ACEC math package refers to a package MATH DEPENDENT which provides access
to the following three attributes of a real number:

" IntExp (x) which returns the integer representation of the exponent in the normalized
representation of its floating-point number parameter. For example, IntExp (3.0) = 2
on binary machines because 3.0 = 0.75 * (2**2).

" Adx (x, n) which adds N to the integer exponent in the floating-point representation
of X, thus scaling X by the N-th power of the radix. For example, Adx (1.0, 2) = 4.0
on binary machines because 1.0 = 0.5 * (2.0**1) and 4.0 = 0.5 * (2.0**3).

" SetExp (x, n) which returns the floating-point representation of a number whose signif-
icand is the significand of the floating-point number x, and whose exponent is the integer
n. For example, SetExp (1.0, 3) 4.0 on binary machines because 1.0 = 0.5 * 2.0**1
and 4.0 = 0.5 * (2.0**3).

There are two different approaches to implementing MATH DEPENDENT: one which is
representation dependent and which directly manipulates the bit fields within a floating point
number (this must be tailored to each target since it depends on the floating point number
representation); and one which implements the attribute functions without "bit tweaking"
using only the values of floating point number. The latter is the representation independent
approach discussed in this section.

The portable version of MATH-DEPENDENT is coded by using operations on the floating
point values without directly manipulating the bit patterns used to represent the values. To see
how this is possible, consider the three functions exported by MATH-DEPENDENT in turn.

" Function ADX:

This function is straightforward to implement by multiplying or dividing by an appropriate
power of two. It can be tolerably efficient using a precomputed array containing the
powers of two.

" Function SETEXP(X,N):

Using the function INTEXP to determine the power of two of a floating point value, the
result of SETEXP can be computed as

return (X / 2.0 ** INTEXP(x)) * 2.0 ** N

46

which is representation independent. This formulation is intended for clarity and would
be rather slow if coded as shown. The exponentiation can be efficiently calculated using
an array of the powers of two.

* Function INTEXP:

The implementation of this function is the key to the proposed representation independent
implementation. It is possible to directly determine the largest power of two greater than
or equal to a floating point value (which will be the value of the binary exponent of the
value) by searching an array containing powers of two instead of manipulating the bits
of the floating point number representation. This will not be as efficient as a direct "bit
manipulation" approach, but it is independent of where exponent fields are located in
floating point numbers.

The functions must be coded carefully to avoid numeric overflow or underflow.

3.2.4.1.4 GEN-MATH with tailored MATHDEPENDENT

The ACEC Software Product distribution tape contains the following versions of the file

MATH-DEPENDENT.

.PORT portable version

.DEC DEC Ada VAX HOST/VAX TARGET

The Ada model numbers are defined in terms of binary radix. For a target machine with
a non-binary radix, the error bounds produced by using the Ada model numbers will not be
as tight as they are with binary radix targets. This will be most apparent in MATHTEST and
DBLMATHTEST which verify the accuracy of the math library. These programs use attributes
MACHINEMANTISSA, MACHINEEMAX, and MACHINEEMIN to obtain the properties of
the target machine used to calculate tolerable error bounds. For a non-binary radix machine
representation, the value of these attributes will be the smallest binary value which is consistent
with the actual representation. Using this definition in MATHTEST will permit (slightly) more

numeric errors in the implementation of the math functions before errors are reported.
In the following sections, two separate points are discussed. The first discusses the types

of modification which may be necessary to MATH-DEPENDENT, and the second discusses
how various types of errors in the implementation of MATH-DEPENDENT would show up in
DEPTEST results.

The package MATH DEPENDENT must be adapted to reflect both the characteristics of
the target machine floating point hardware and the facilities which the Ada compilation system
provides to manipulate bit fields in floating point variables.

47

The size and location of the sign, exponent, and mantissa of a floating point number are
critical, as are other representation details such as the encoding of the exponent field (biased,
sign magnitude, or complement number representation). This information should be extracted
from the documentation on the target machine. It is often included in Appendix F.

Once information on the floating point representation is determined, there may stiil be a
problem in coding MATH DEPENDENT. The fundamental reason is that Ada is designed to
be portable and system dependent operations are not universally supported.

It is possible for an ACEC user to implement a tailored version of MATH-DEPENDENT by
interfacing with an assembler coded routine. This might produce the fastest execution speeds.

There are several approaches to adapting MATH-DEPENDENT to a target system.

" The cleanest approach is the use of record representation clauses to treat the fields of
a floating point number as integer (sub)types. Adaptation will involve modification to
reflect the target representation. Remember that different compilers for the same target
hardware may choose to number the bytes in a record differently (left-to-right vs right-
to-left). Record representation clauses are a Chapter 13 feature which is not universally
supported.

" To isolate fields in a floating point value, it is necessary to sidestep normal Ada type
rules. This can be done by:

- Defining several access types which point to integer and floating point objects and
arranging for them all to point to the .m.ic actual objects. That is, instantiating
UNCHECKED-CONVERSION between the access types (pointers to integers and
pointers to float) and as part of system setup, initializing all the pointers to the
same actual location.

- Using instantiations of UNCHECKED-CONVERSION, either between floating point
types and integer types, or between scalar types and record types. This approach
was used for the DEC Ada version of MATH-DEPENDENT.

Bit field extraction can then be coded using integer arithmetic:

- divide and MOD to extract fields (however, a divide of a negative value in a machine
using two's complement integer arithmetic is inot a shift);

- multiply by powers of two to shift left:

- add to OR fields (after insuring that the field in one operand is zero);

- negation to complement bits.

All these methods have disadvantages. The first is the most straightforward, but may
not compile when the sizes are different (even though the conversion between different

48

sized objects occurs in a piece of code which will not be executed when the sizes differ).
The second alternative relies on the PRAGMA SUPPRESS being honored; however, a
compiler which determines at compile time that a constraint violation would occur when
a statement is executed may generate a compile time error (warning) and generate code
which would raise the CONSTRAINT ERROR exception at execution time. SUPPRESS
grants a compiler permission to omit checking, but the LRM explicitly allows compilers
to igiiore a pragma SUPPRESS (LRM 11.7, paragraph 20).

3.2.4.2 DEPTEST

DEPTEST is a program which tests the functions in MATH DEPENDENT with a range
of arguments which will expose many of the potential errors in the implementation of these
functions. The program contains a series of statements which call on the functions and compare
the results returned to the correct answer. In the DEPTEST output file, the discrepancies are
flagged with a string "<<< ERROR >>>" starting in column 65, making them easy to detect.

Below are listed several symptoms of errors which might be reported by DEPTEST, and
some candidates for what the underlying source of the errors might be:

" If IntExp returns a constant for all values, the function is probably not extracting the
right bit field from the number. Perhaps parameters are grossly wrong (e.g. using
record representation clauses, the bit numbering is backwards) or there are byte ordering
problems (machine architectures can number bytes from the high end or the low end;
and when the target orders differently than the programmer expected it will appear that
the bytes have been interchanged).

* If IntExp returns a value which is a constant power of two off, the exponent bias is
probably not set correctly.

* If SetExp or AdX modify any bits of the mantissa, the computations to adjust the
exponent field are wrong. When the computed results are not some power of two different
from the expected results, the exponent field is not being isolated properly. Check for
byte-interchange, bit numbering and field sizes.

" If AdX returns a value which is a constant multiple of the correct value, the exponent
field location may be a bit or two off.

" If the result of SetExp is off by a constant power of two, the exponent bias may be wrong.
When AdX works properly an invalid bias is a likely cause of a constant factor error.

" Negative values, of either the floating point value or of the exponent field are given
special processing. If results for negative values are wrong, the code for processing
negative values needs to be reviewed.

49

e Optimizing compilers may do strange things with these functions. Consider the fol-
lowing example which occurred on one compiler during development. The compiler
noticed that the SetExp function assigned to a float (through an access type), did an
UNCHECKED-CONVERSION of the access to float to another access type and performed
some manipulations on that second type, and finally returned the float value pointed to
by the first access type. The compiler performed flow analysis and decided that there
were no modifications to the value pointed to by the first access type before it was re-
turned and so the load of the modified result could be "optimized" away as invariant.
This transformed the SetExp function into an identity function and made it useless. The
compiler vendor agreed after inspection that the UNCHECKED-CONVERSION should
have made the flow optimizer aware an alias had been created which could modify the
values of the object pointed by the access type, and has modified the compiler to be
aware of this fact. The immediate workaround to this problem was to insert an external
procedure call between the assignment to the access type variables, which worked, but
increased the execution time of the functions.

A similar condition may arise in other compilation systems and being warned about the
possibility, users may not be totally frustrated in developing workarounds.

If DEPTEST does not initially work correctly, and the errors observed do not fit one of
the patterns described above, the first thing a user should try is to compile the package
MATH DEPENDENT with no optimizations. On some systems, requesting support for a de-
bugging option is a good way to suppress optimizations. The package may work then. If it
does, the ACEC user may decide to: isolate the difference optimization makes, perhaps by
examining the listing of the machine code generated; or refer the package to the compila-
tion system maintainers for correction; or simply not use any optimization options on that
compilation system.

These functions must work properly for GEN-MATH to work. It is futile to try to verify
that GEN MATH is correct by running MATHTEST until MATH-DEPENDENT has been
verified with DEPTEST. It is much simpler and faster to isolate and correct errors in the
MATH-DEPENDENT function using DEPTEST than using GEN-MATH. It is much easier
to debug a function when the expected results are checked by a test program, than when a
programmer must observe that a complex function (such as LN) sometimes returns a wrong
result and isolate the problem in that function to an error in a low level function which it calls
upon. Most of the problems uncovered while transporting GEN-MATH onto new compilation
systems by MATHTEST have been due to errors in the functions in the MATH DEPENDENT
package.

50

3.2.4.3 MATIITEST

Once MATH and DBLMATH have been adapted to the target system, they should be
tested to verify correct operation. The programs MATHTEST and DBLMATHTEST are
provided to do this. These programs test various identities and special cases for the elementary
math functions, and output the number of bits in error in the computation of the function.
There are several groups of tests, covering ranges of the functions, and over each range, the
program computes 2,000 sample points distributed at random (usually dividing the range into
2,000 intervals and selecting a point within each interval using a uniform random distribution).
Oil each range, the program displays both the maximum relative error and the root-mean-
square error in terms of the number of bits of precision lost. The root-mean-square is the
square root of the sum of the squares of all the errors - it is commonly used as a measure of
the "average" error in the set of numbers.

MATHTEST and DBLMATHTEST will write an error message whenever the maximum
error is larger than what the NUMWG specifications recommend, whenever some of the specific
identities that the NUMWG recommends fail, and when selected examples which should (or
should not) raise an exception, based on the NUMWG specifications, do (or do not).

These programs are an adaptation of the work of Cody and Waite. The interested reader
is referred to their book, cited in Section 2.2, for details.

MATHTEST requires the package RANDOM, which contains a random number generz tor.
There are two versions of RANDOM, one using 16-bit integers (RAN16) and another u'ing
32-bit integers (RAN32). For systems which support 32 bit integer types, RAN32 should be
used. This package uses a linear congruence pseudo-random number generator and should
be fairly fast. For compilation systems which do not support integer types with that range,
RAN16 must be used. That package uses a Tausworth random number generator with a
shuffling technique as described in "Improving a Poor Random Number Generator," by C.
Bays and S. D. Durham, ACM Transactions on Mathematical Software, Volume 2, Number 1,
March 1976. RAN16 should be fairly portable, although it assumes that it can perform an
UNCHECKED-CONVERSION between a packed boolean array of 16 elements and an integer
type. Since the only purpose of either generator is to provide a source of random values for
testing the math library, the quality of the generator required is not as strict as would be
necessary for more exacting purposes. MATHTEST results should show very few bad tests,
and the loss of significant bits should not be larger than the NUMWG recommendations.

An ACEC user may be presented with a choice between using a fast implementation provided
math library on which MATHTEST detects errors, and a GEN-MATH based version which is
slower but with smaller errors and which processes exceptions as the NUMWG specifications
recommend. This is not a trivial choice. The ACEC test suite and support tools do not
strongly rely on the NUMWG recommended exception processing and most math libraries
not developed specifically to conform to the NUMWG recommendations will not conform
with these recommendations. If the treatment of exceptions is the only discrepancy reported

51

by MATHTEST and DBLMATHTEST in testing an adaptation of a vendor provided non-
NUMWG math library, users may decide applications they develop would use the vendor library.
That is, easy portability to other NUMWG based systems may not be a concern. Such users
would properly not consider testing using anything but the supplied math library. If MATHTEST
and DBL MATHTEST detect large numeric errors, an ACEC user must decide, based on the
expected usage of the math library, which math library to use for testing.

3.2.5 Space Measuirenieiit

Users may be concerned with two measures of code size: (1) code expansion and (2) Run Time
System (RTS) size.

3.2.5.1 Code expansion ieasuirenient

Depending on the system, there are two alternative methods available for measuring code
size expansion. Both are discussed below.

3.2.5.1.1 Using Label'ADDRESS

If the system under investigation supports the ADDRESS attribute, then this measurement
will be straightforward. This -ttributt , a Chapter 13 feature which has not been required for
validation. Some systems used during ACEC development accepted the attribute, but always
returned zero for a value.

3.2.5.1.2 Using the GETADR assembly routnie

The ACEC uses the label'ADDRESS attribute to collect code expansion size measurements.
Not all implementations support this attribute correctly. Some compilers may generate an error
or warning message when processing the label'ADDRESS attribute in the source, and some
accept the syntax and return random results. The last case can be detected by the printing of
random values for sizes. An ACEC user should review documentation on the Ada compilation
system being tested to see if the attribute is supported.

If the ADDRESS attribute is not supported, an assembly language procedure can be written
which retiirns the address of its caller. The details of such an assembler routine are system
dependent. lhe following example works on DEC Ada Version 2.0 under VMS.

TITLE GETADR

This procedure returns the value of the calling
modules call address in RO.

52

.PSECT CODE PIC, SHR, NOWRT, LONG

.ENTRY GETADR "M<>

Move the PC contents to RO

MOVL 16(SP), RO
RET
.END

This program is on the distribution tape named GETADR.MAR.
To use the GETADR function there is a set of files on the distribution tape with the suffix

".SIZ" which incorporate this modification for collecting code expansion size and elapsed time
measurements on DEC Ada. In versions 1.5 and earlier of DEC Ada, the label'ADDRESS
attribute always returned the value zero, making it useless for measuring code expansion sizes.

It may be necessary to modify the linker commands to specify the library where the assem-
bler object exists. Details of adapting this to other implementations depend strongly on the
provisions for calling assembler routines from Ada programs and are highly system dependent.

An ACEC user may decide that code expansion size measurements are not of primary
concern. Such a user may ignore size measurements and simply report zero for all labels.

To compute the code expansion size, the INCLUDE tool inserts a unique label after the last
line of the insertion for STARTIME; another unique label before the first line of STOPTIMEO;
and generates an assignment statement setting the variable GLOBAL.EXPANSION-SIZE to the
difference between the addresses of these two labels for STOPTIME2. If the label'ADDRESS
clause does not work, the user must modify these statements before compiling them. The
INITTIME file contains a usage of the label'ADDRESS clause to compute the null loop code
expansion size, and this statement may also need to be modified. It is possible to modify
these statements by editing the expanded code files, but it is much less effort to modify the
INCLUDE program and the INITTIME file to avoid use of the label'ADDRESS clause.

3.2.5.2 RTS size

This information may be available from the load map produced by the linker. If not, the
user will need to get in touch with the compiler vendor. The size of the run-time system will no
doubt vary depending on the features used. For example, tasking programs will require many
run-time facilities not otherwise needed.

53

Some operating systems provide a tool (for example, the SIZE command on some UNIX
implementations) to examine a relocatable or executable file and report the size of the code
sections. If such a tool is available, it could be used to obtain size information.

The following is a (truncated) sample from a link map generated by the TeleSoft VAX
hosted/VAX targeted compiler.

54

REED 15-APR-1988 15:36 VAX-11 Linker V04-O0

! Object Module Synopsis !

Module Name Ident Bytes File Creation Date Creator

TSADARTL 0 [TELEGEN2.TSADA31I5]TSADARTL.EXE;I 7-OCT-1987 20:26 VAX-11 Linker

V04-00
LIBRTL V04-001 0 SYS$COMMON:[SYSLIB]LIBRTL.EXE;2 22-MAY-1987 23:12 VAX-11 Linker

V04-00

SCRSHR X-1 0 SYS$COHMON:[SYSLIBISCRSHR.EXE;I 22-NAY-1987 23:16 VAX-11 Linker

V04-00
-MAIN. 828 USER2:[LEAVITT.TELESOFTIREED.OBM;1 15-Apr-1988 15:35 TeleSoft Ada

REED 19360 USER2:LLEAVITT.TELESOFT]NYLIB.OLB;2 15-Apr-1988 15:31 TeleSoft Ada

ECC 1628 USER2:[LEAVITT.TELESOFT]MYLIB.OLB;2 15-Apr-1988 16:29 TeleSoft Ada

GLOBAL.CPUTIMECLOCK
140 USER2:[LEAVITT.TELESOFT]NYLIB.OLB;2 12-Apr-1988 15:07 TeleSoft Ada

GLOBAL 7616 USER2:[LEAVITT.TELESOFT]NYLIB.OLB;2 12-Apr-1988 15:06 TeleSoft Ada

CGSKAIN.OBJ V1.0 21 [TELEGEN2.TSADA315]CGSAIN.SAV;I 9-SEP-1987 17:22 VAX/VMS Macro

V04-00

! Program Section Synopsis !

+--------------- +--

Psect M aie Module Name Base End Length Align Attributes

---------- ----------- --- - -- -- - -- - -- - - - -

SADATA 00000200 0000086F 00000670 (1648.) LONG 2 PIC,USR,CON,REL,LCL,NOSBR,NOEXE,

RD, WRT,NOVEC
.MAIN. 00000200 0000029B 0000009C C 156.) LONG 2

REED 0000029C i0000029F 00000004 (4.) LONG 2

ECC 000002AO 0000030F 00000070 (112.) LONG 2

GLOBAL 00000310 0000086F 00000560 (1376.) LONG 2

SACODE OOOOOAOO 00007713 00006D14 (27924.) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE,

RDNOWRTNOVEC

.MAIN. OOOOOAOO OOOOOC9F 000002AO (672.) LONG 2

REED OOOOOCAO 0000583B 00004B9C (19356.) LONG 2

ECC 0000583C 00005E27 OOOOOSEC (1516.) LONG 2

GLOBAL.CPUTIME-CLOCK
00005E28 OOOO5EB3 0000008C (140.) LONG 2

GLOBAL O0005EB4 00007713 00001860 (6240.) LONG 2

SCGSIN 00007714 00007728 00000015 C 21.) LONG 2 PIC,USR,CON,REL,LCL, SHR, EXE,

RD,NOWRTNOVEC
CGSNAIN.OBJ 00007714 00007728 00000015 C 21.) LONG 2

+--...-------...

! Symbols By Name !

+--------------.

This portion of the map displays information on the size of the program (which is 828 +

19,360 + 1,628 + 140 + 7,616 + 21 bytes). The runtime library (RTL) size is zero because

it is a shareable image. Not all link maps are this helpful.

55

3.2.5.3 Assembly laniguage procedure

There is one test problem, SS747 in program S0747T47, which uses PRAGMA INTERFACE
to call on an assembly language procedure (which then does a simple return). This problem
will have to be adapted to each implementation, using the assembly language of the target.

Below is an example of an assembly language procedure in MACRO, the assembly language
for the VAX, which complies with the linkage conventions for the DEC Ada compiler.

TITLE NULL PRG
.PSECT CODE PIC, SHR, NOWRT, LONG

.ENTRY ASMNUL
RET

.END ASMNUL

Not all implementations will support the interface to procedures coded in assembler. Even
when supported, if a project has determined that it will not be ir luding assembler code
procedures in its applications, this problem will not be of importance or interest and may be
skipped.

When linking to routines coded in assembler, it will often be required to specify additional
information to the linker. This is implementation dependent.

3.2.6 Systeiii Paraiiieters

System parameters are variables, named numbers, and compiler switches which an ACEC user
may modify.

There are several groups of such parameters which impact the ACEC timing routines, the
compilation system, and the runtime system. The parameters available for the second and
third categories are implementation dependent, but some general advice is given.

Users should not have to vary any of these settings.

9 There is a set of constants which control the number of executions of the timing loop a
problem will perform. The named numbers BASIC ITERATION COUNT, MIN
ITERATION COUNT. and MAX ITERATION COUNT in the package GLOBAL limit

the timing loop. The first limits the maximum number of iterations of the inner timing
loop. The next two set lower and upper bounds on the outer timing loop. Setting
small values for these constants will limit the total amount of time the execution of
the test suite takes; however, it may result in increased error in the measurements (and
an increase in the number of test problems flagged as not being within the requested
statistical confidence levels). A full discussion of the timing loop and the use of these
constants is contained in the Reader's Guide, Section "CLOCK VERNIER".

56

GLOBAL.TIMERTOLERANCE is the requested error tolerance, initially set at 5%. The
statistical confidence level is set in the array GLOBAL.TIMERCONFIDENCE_ LEVEL,
initially set for 80% and the associated constant array GLOBAL.TVALUE which contains
entries for the t-distribution. To modify the confidence level, a user will have to replace
the values of this array with values from the t-distribution for other confidence levels
which can be obtained from any standard statistical text. See the Reader's Guide,
Section "CLOCK VERNIER", for more details. It is not expected that many ACEC users
will modify the confidence levels, although some instructions for doing this are contained
as comments in the source code for the package GLOBAL.

* On some systems, directives are given to the compiler by options specified at the invoca-
tion of the compiler. These are implementation dependent and inherently non-portable. A
user may ask what settings are appropriate for a new system. Such options have included:
optimization levels; requests to perform automatic inline subprogram expansion; infor-
mation that subprograms are nonrecursive (permitting alternative and faster linkages);
requests for cross reference listings; program debug support; the name of the program
library to be used; etc. In general, the options specified should be those which produce
the faster execution, consistent with the values of the pragma SUPPRESS options given
in the test programs. The primary purpose of several test problems is to explore the
performance of constraint checking and exception processing, or to observe the effect of
requesting PRAGMA OPTIMIZE(SPACE). Compiler options should not overwrite these.
Note that some of the test problems are recursive, and specifying to a compiler that all
subprograms are non-recursive will introduce errors and is not permissible.

e The default stack space may be inadequate, for either the main program or user defined
tasks. While user defined tasks can specify a T'STORAGE SIZE for a task activation,
there is no syntax in the language to specify a size for the main program. Many systems
provide a method, often in the linker, to reset a default size for tasks and for the main
program. Adjustment of this parameter may be necessary to get some of the programs to
run. An ACEC user may choose to mark a problem as failed when the default settings are
not sufficient. This is acceptable, but readers should understand that when a problem
is marked as failed due to capacity limitations, that may simply mean the tester did
not find a setting which permitted execution - such a setting may c:ri.t, but requires
experimentation to find. Each ACEC user must decide how much effort to invest exploring
adaptation parameters when an implementation's default sizes are insufficient to permit
execution. In some cases the problem with memory space is not that one individual
task overflows its allocation, but that the total memory requirements of the active tasks
exceed available memory. It may be possible to reduce default task sizes to permit all
concurrent tasks to fit in memory and still have sufficient memory allocated to each task
so that they do not overflow.

57

3.2.7 Exceptional Tests

3.2.7.1 Ixteriipts

To execute the interrupt tests (named INTQ, INT_1, ...) the compilation system must
support tying tasks to interrupts, as in LRM 13.5.1. These problems tie task entries to hardware
interrupts and use LOW-LEVELIO to trigger the interrupts. To execute these programs, the
target system must support both LOW-LEVELIO and tying task entries to interrupts. Many
systems will not support either.

On implementations which support tying tasks to interrupts but do not support LOW LEVEL 10,
the problems may be adapted to use a routine coded in assembler language which will trigger
the interrupt when the assembler routine is called.

The LRM states that the conventions that define the interpretation of a value of the
type SYSTEM.ADDRESS (occurring in the address clause) is implementation-dependent. One
natural interpretation for the argument of the USE AT clause is as an interrupt level.

Many Ada implementations on multiprogramming targets will not support interrupt entries.
Programs which directly manipulate hardware are generally privileged processes on current
operating systems. When such a program malfunctions, it can crash the operating system.
Many operating systems force such operations to go through operating system calls so that
the operating system can maintain control and protect its own integrity.

58

4 TEST SUITE COMPILATION

The ACEC test suite contains a number of individual test programs which must be compiled,
linked, and executed.

4.1 ORDER OF COMPILATION

The ACEC test suite is organized as one executable program per file. Some programs contain
more than one test, but each program is independent of the other programs. If more than one
compilation unit is required, these are included in the source file as separate compilation units,
in valid compilation order. For example, the source file for a program which uses a unique
package will contain both the source for the package and the source for the program.

There are two exceptions: MATH and GLOBAL. Instructions for modifying and compiling
MATH were presented above. GLOBAL may also need to be modified before it is compiled. The
package GLOBAL is used by all of the benchmark programs. It must be compiled before any
of the timing programs can be compiled. Depending on system problems, GLOBAL may need
to be changed. If the system does not support 32-bit integers then the declarations involving
"BIGINT" should be commented out. If the system does not support real numbers longer
than 32-bits the declarations involving "double" should be excluded. MATH uses GLOBAL, so
GLOBAL must be compiled first.

The use of the Ada rules for combining source files with multiple compilation units simplifies
the construction of the test suite and the steps necessary to transport it to new systems. In
particular, the source files containing the test programs are essentially independent, and can
be compiled, and recompiled, in any order which is convenient. Information about compiling a
package or library unit before the other units which WITH it is implicit in the ordering of the
units in the source file. A user will not have to modify a command file to reflect a particular
order of compilation.

4.2 SYSTEM DEPENDENT TESTS

Some tests use system dependent features, such as TEXT-IO, or Chapter 13 features which
may not be available on all target systems. Other tests require extended precision floating point
numbers. The Version Description Document (VDD) Appendix VII, "SYSTEM DEPENDENT
TEST PROBLEMS", provides a list of tests which use various system dependent features. If a
feature is not supported on your system. you need not try to run the tests that utilize it, and
should expect failure if the tests are attempted.

59

4.3 USING INCLUDE

After the system dependent modifications are finished, the INCLUDE tool will insert the (pos-
sibly modified) timing code into the benchmark programs. INCLUDE assumes that "inputFile"
and "outputFile" are defined as logical names prior to its execution. The suffix of "inputFile"
is assumed to be ".a"; the suffix of "outputFile" is assumed to be ".ada". This use of suffixes
makes it easy to see if a text file has been INCLUDEd or not. On systems which do not support
file suffixes, the user must adapt whatever conventions the host system supports. Some UNIX
based Ada compilers require the input to the compiler have a suffix ".a" instead of ".ada."
Testing on such a compiler will require the suffixes be adapted to match the requirements
of the compiler. There are Ada compilation systems running under operating systems which
do not support the concept of a file suffix (one example is the Rational R2000). On such a
system more extensive modifications are required to INCLUDE: the appending of the ".txt"
default suffix in the body of INCLUDE must be removed. There are operating systems which
do not support the concept of "logical names," including some versions of UNIX. On these
systems, while it would be possible to modify INCLUDE to prompt the user for the names
of the input and output files, the sample command files provided for the UNIX systems are
sufficient to make INCLUDE work without modifying the source for INCLUDE. The command
file to execute INCLUDE uses UNIX pipes to copy the UNIX standard input file into a known
name so that the Ada program can read it, and copies the output from the INCLUDE program
from a known name into the UNIX standard output pipe. Another modification would have
been to make the INCLUDE Ada program read from Ada STANDARD-INPUT and write Ada
STANDARD-OUTPUT which should be mapped to the UNIX system's STANDARD-INPUT
and STANDARD OUTPUT; however, this would raise the problem of forcing the INCLUDE
program's error messages (which are currently written to Ada's STANDARD OUTPUT) to
appear within the output file which would be awkward. ACEC users who are more experienced
in UNIX shell programming may be able to design more elegant solutions to this problem.
The method used has the performance disadvantage of copying the input and output files,
but it does accomplish the intended task without modifying the source text of the INCLUDE
program.

The INCLUDE program reads the source text, looking for lines that begin with PRAGMA
INCLUDE. These lines are copied as comment lines, the file specified in the PRAGMA INCLUDE
is inserted, and the rest of the source text is copied as is into the new file. The program should
now be ready to compile, with timing code in place. This is shown below:

60

P.A INCLUDE P.ADA COMPILE P.REXE

Figiv 3: USING INCLUDE

61

In the figure, the source for a test program "P.A" is run through the INCLUDE process,
generating an expanded text file "P.ADA" which is then passed through the compiler (and
linker), generating an executable file "P.EXE".

The program INCLUDE also inserts unique labels between the beginning and end of the
timing loop (at the end of STARTIME and at the beginning of STOPTIMEO) and inserts
an assignment statement setting EXPANSION SIZE to the difference between these labels
(using the label'ADDRESS attribute) and converting the result to type GLOBAL.INT. Several
implementations tested do not support the label'ADDRESS attribute, and the presence of this
assignment on these systems can generate a compilation error, preventing execution of the
program.

Users have two basic choices.

They could decide not to collect code expansion measurements at all. This is certainly
simple to do and some classes of users are not very interested in code expansion (or at least
would only be interested in code expansion sizes when the execution time measurements
indicate an acceptable performance level).

To ignore code expansion sizes, two changes need to be made. First, modify INCLUDE
so that the assignment statement will set CODE-EXPANSION to zero, rather than to
an expression. Second, modify INITTIME so that the null loop code expansion size is
printed as a constant zero and does not use the label'ADDRESS clause.

" The user can collect code expansion size by writing an assembler language function which
returns as its value the address of the caller. This was mentioned in Section 3.2.5.1.2.

After writing the function, the users can incorporate it into the timing loop code by
modifying the included files: INITTIME, STARTIME, STOPTIMEO, and the package
GLOBAL.

- INITTIME.

Include in the null loop computation the determination of the NULL LOOP SIZE.

- STARTIME.

Include as the last statement in the file an assignment of GETADR to START
ADDRESS.

- STOPTIMEO.

Include as the first statement in the file an assignment of GETADR to STOP-ADDRESS.
- GLOBAL.

Add declarations for the variables: START ADDRESS and STOP ADDRESS (of
type SYSTEM.ADDRESS), and NULLLOOPSIZE (of type INT).
Add a declaration for the function GETADR.

62

Modify the procedure STOPTIME2 to compute CODE-EXPANSIONSIZE prior to
printing it by subtracting START ADDRESS from STOP ADDRESS.

Timing measurements obtained when the GETADR function is used will be more variable, since
including two calls on an external function in the null timing loop will result in a longer running
null loop time. This will tend to make it harder to measure the times of quickly executing test
problems.

The distribution tape will include versions of GLOBAL, INITTIME, STARTIME, and STOP-
TIMEO with a suffix of ".SIZ" which is a version of the timing loop code which will collect code
expansion measurements using the GETADR function for the DEC Ada compilation system.
This can be used as a model for implementations which do not support the label'ADDRESS
clause.

4.4 COMPILATION

The user is now ready to compile the test suite. This section will discuss problems which might
be encountered in compiling the test suite and present some examples which show how the
compilation of the test suite can be accomplished.

4.4.1 Potential Compilation Problems

This section delineates some of the potential problems which may arise and suggests workarounds
when available. A complete list of tests with compilation difficulties on some systems is available
in the VDD (Version Description Document) Appendix IV, "QUARANTINED TEST PROB-
LEMS".

Some test problems are implementation dependent. Some are tests for implementation
dependent language features (such as tying tasks to interrupts) and some are tests which may
exceed implementation defined capacity limits (such as problems using floating point types
declared with 9 digits of precision). For the ACEC to span the major features, there are
test problems using features not all implementations will support. These include the use of
packing, UNCHECKED-CONVERSION, UNCHECKED-DEALLOCATION, record representa-
tion clauses, tying tasks to interrupts, length clauses, etc.

It is possible that running any new program through a validated Ada compilation system
will uncover an error in that system. This is not expected to be a common occurrence, and
the ACEC is not designed to try to find errors in implementations. If such errors are observed,
a problem report against the Ada compilation system should be submitted.

It is possible that an Ada program, even though it has executed as expected on multiple
validated Ada compilers, is erroneous. For example, a program may work as expected when
library packages are elaborated in some particular order, but which fail when they are elaborated
in one order which is permitted by the LRM. All the systems the program was run against with

63

satisfactory results may have succeeded because the implementation happened to select a
fortuitous (but not guaranteed) order. If this is observed, an error report against the ACEC

should be submitted.
Some Ada systems put arbitrary limits on the size of a procedure. If this difficulty is

encountered while compiling a test program which contains multiple test problems (in particular,
the SIMPLE test programs named SnnnnTmm, which contain up to 15 separate test problems
per program), the program can be split into smaller files, taking care to copy any global
declarations to each file.

Several compilation systems tested during development had the "user belligerent" (as con-

trasted to "user friendly") property of corrupting the program library system when a user

aborted the compiler. The systems did not always inform users in an understandable way that
the library was inconsistent, and sometimes simply acted strangely, refusing to accept programs
which compiled without difficulties before the library crashed. This forced the creation of a
new library and the recompilation of all prior units. Users who are testing a compilation system
which they do not know to be robust may avoid problems by not aborting the compiler, or
at least remember that aborting a compilation is a potentially hazardous operation which may
cause strange behavior later.

4.4.2 Example Compilation Routines

Two examples of the control procedures necessary to accomplish these tasks will be available:
one for VAX VMS and one for UNIX.

4.4.2.1 VAX/VMS

The following VAX/VMS command file (CompileAcec.com) may be used as a model for

other compilation systems. The command files called by this file are on the distribution tape.

$ set verify

$ set def [leavitt.test]
$0 ---

$! Rename the directory [leavitt.test] here and in all the other .COM

$V files to a local directory usable for testing. This set of files

V' for DEC Ada assumes that the users LOGIN.COM file includes an

$! appropriate ACS SET LIBRARY command.

$
$ Compile the "baseline" of the ACEC Test Suite. The "baseline" of

$' the suite consists of Global, Ran, Gen-Math, Math, and DblMath.

V' These will need to be compiled before anything else, in the order

$1 given.
.5--

$ CompileBaseline

$--

$' Next, compile the files necessary for the "Setup" tests of the

V' ACEC. These tests include "MathTest" which verifies the accuracy

64

$! of your M~ath package on your system, and "TestCal" which verifies
V' the accuracy of your system clock.
V --- I

V! QSetup-Test-Programs

V!--

5! Setup INCLUDE
V!--

5!
$ Qcompile-tools

VI

V --

5! Compile the files that comprise the ACEC test suite.
V --- I

$' *Compile-Test-Suite

$ show time

$ Dir/since=yesterday ACEC-Lib-Dir

4.4.2.2 UNIX

The following UNIX Bourne shell script (Cmp-Acec.unx) may be used as a model for other
UNIX based systems. Interested users can review the complete scripts as they are presented
on the distribution tape.

65

SCMPACEC

PATH=$PATH:/usr/vads/bin V set path to include VADS directory

8!---

8' Rename the directories test suite-dir, tools-dir, and work-dir

! here and in all the other .UNX files to local directories usable

! for testing. This set of files assumes that the appropriate

8! directories and Ada library have been created.

! --

test-suite-dir=/usr/people/lindsey/fqtlib

tools-dir=/usr/people/lindsey/fqtlib/tools-dir
work-dir=/usr/people/lindsey/fqtlib/test-work

cd ${test-suite-dirl

echo 'CmpACEC: Compile the ACEC: ps
=
' $$ >> {work-dir}/cmpacec.log

V ...---
8' Compile the "baseline" of the ACEC Test Suite. The "baseline" of
8V the suite consists of Global, Ran, Gen-Math, Math, and Dbl_Math.
S! These will need to be compiled before anything else, in the order

V given.

cmp-base

....---

U Next, compile the files necessary for the "Setup" tests of the

8! ACEC. These tests include "MathTest" which verifies the accuracy
8' of your Math package on your system, and "TestCal" which verifies
8! the accuracy of your system clock.

cmp-tst-pr

.....---
8! Compile the ACEC support files.

8!---

cmp-tools

--

U1 Compile the files that comprise the ACEC test suite.

8!---

cmp ts

66

5 LINKING/DOWNLOADING THE BENCHMARKS

Linking the programs should be straightforward. The name of the main program is the name of

the source file containing the test problem. This may need to be specified in the link commands
to each system. Users should request a link map (sometimes called a memory map) so they

can determine the size of the runtime system.
For self-targeted systems, loading a program is equivalent to running the executable file

produced by the linker. The only problem expected is when the size of the load module exceeds

memory capacity. Some capacity limits may be impossible to work around, such as when a

program declares an array which is larger than the address space of the target machine. In
other cases, it may be possible to adjust parameters to permit the program to execute. On
some multiprogramming host systems, it may be sufficient to request a larger than default
partition. On other systems, it may be possible to get the program to run by adjusting values

associated with the default sizes for task activations and/or the main program, or with the size
of the global heap.

Other complications arise with cross compilers. The file format of the load module may
need to be modified to match that required by the target hardware. For example, on the

1750A several formats exist. This is system dependent and not peculiar to the ACEC test
suite. Contact your hardware system implementor for help.

Potential difficulties include code files that are too large, particularly for targets with lim-
ited memory. For the simple tests, which include more than one test per executable unit, a
workaround is available: divide the program into two or more executables. For the other tests,

they will have to be marked as failed.
Since the time to download programs into target systems can take longer than the time to

compile and execute them, considerable user time is saved by combining several test programs
into one executable main program.

5.1 MERGING PROGRAMS

Where downloading is a very time consuming process, it may be possible to speed up the
execution of the test suite by combining several test programs into one large program. The

first thought on hearing this is that it will not help, since if each program takes five minutes

to download, loading a program twice as large will take twice as long and the end result is not

a gain. However, this is not always true. The Ada runtime system should only be loaded once
for each program, and the size of the runtime system is often a large factor in the size of the

executable code of a test problem. Also, the procedures to download and execute a program

often take a considerable amount of operator time for each individual program.

Consider the following program template.

Using this template, several test programs can be combined into a larger program. As long

67

with program 1;
with program_2;

procedure mergetest is
begin

program-1;
program_2;

end mergetest;

Figtui 6: PROGRAM MERGING

as the resulting program will fit within the capacity limits of the target system, the results
of combining the programs should be the same; however, the total download time may be
significantly smaller. This setup does not require any modifications to the programs to be
merged. However, it will enter each program into the library system. This approach will work
where the individual programs are compiled separately into the program library. In this case
the mergetest program source file will not contain the source text for the individual programs,
but only the "with" and the body of the main program.

A reasonable questior : ask is whether using the method recommended here will result
in different code being g .,erated for the test problems. Each individual program need not
be linked as a main program, and the construction of a merged main program will involve
a separate link command. Good systems should not load multiple copies of the TEXT 10
package, even though it is "WITH"ed and instantiated in each of the smaller compilation
units. The code executed for each merged test problem should be the same as the code
executed when the problems are not merged. Targets where the execution time can vary with
the memory location (for example, those with lower speed memories at high addresses) can

observe different execution times when the test problems are run in a linked mode. This should
be anticipated by users executing on such targets. Even without merging tests they should
expect to see occasional anomalous results due to memory allocation - some problems may
be large enough to force the allocation of some code into "slow" memory.

68

6 RUNNING THE BENCHMARKS

Ordinarily, running the benchmarks should be a straightforward process. All of these tests
ran successfully on the five trial systems, except those that have been flagged in the Version
Description Document Appendix IV, "QUARANTINED TEST PROBLEMS". If you are com-
piling and running on a self-targeted system, you may be able to set up an "exec" or "corn"
file which will include, compile, link, and run all of the normal benchmark tests without further
effort.

6.1 POTENTIAL RUNTIME PROBLEMS

This section delineates some of the potential problems which may arise at runtime and suggests
workarounds when available. A complete list of tests that failed while executing is available
in the VDD (Version Description Document) Appendix IV "QUARANTINED TEST PROB-
LEMS" for the current version of the ACEC.

The following is a list of potential runtime problems:

" The range of valid task priorities is implementation defined, as stated in LRM 9.8 and
13.7. Several tests will not operate as designed if an implementation does not support
priorities in the range 1 .. 3.

" Several tasking tests will fail if run on a runtime system which does not support pre-
emptive priority scheduling. These include DELAYS, TASK44, and TASK45. These
programs contain some checks and will generate a failure message if they detect that the
scheduler is not pre-emptive.

" If the timing loop initialization code, INITTIME.TXT, finds that the value of SYS-
TEM.TICK is not consistent with observed clock measurements, it will report a discrep-

ancy which should be examined.

* No output at all means that something fundamental is wrong. The time for the null loop
should always be produced. If not, the timing loop is not working and the CALENDAR
package should be suspected.

" No output for a particular test problem means failure. You may be able to isolate the
problem. Almost certainly the system you are testing is at fault.

* Nonsense times, either very large or very small. These will often be flagged in the analysis
stage by the MEDIAN program (see the Reader's Guide, Section "RANDOM ERRORS",
for more information).

69

" Programs may fail and produce an Ada exception message, or a system failure message.
While exceptions are raised in the course of running some of the tests, there are handlers
for these "expected" errors. A program running on one of the smaller systems may run
out of memory and raise a STORAGE-ERROR. Some of these failures may be rectified by
changing the stack size or by specifying a length clause; others in the tasking group may
be run by setting the allocated storage with T'STORAGESIZE. Contact your compiler
vendor for more guidance.

" If a program fails at execution time for no apparent reason, the first step in isolating the
problem will typically be to recompile it requesting both no optimization and no constraint
check suppression. If the program ran without incident when compiled with these options,
the user should suspect a problem with the compiler's optimization routines. The ACVC
tests are typically run without suppression and using the default setting for optimization,
so it is possible that there are errors in the compiler which would have been detected by
the ACVC if a different set of compiler options had been specified. It is not the objective
of the ACEC to search for errors in compilation systems, but only to test performance.

" During development of the ACEC test suite, two systems were found on which a few
test problems ran for excessively long times and appeared to be in infinite loops. After
detailed investigation, it was determined that the programs were v.o in an infinite loop
and would have eventually terminated, although it would have taken days of computing.
The source of the difficulty was that the performance of the test problem was not stable.
The timing loop code in use then, in an effort to achieve a measurement within the
requested error bounds and confidence levels, repeatedly increased the repetition and
cycle count. Although this approach is generally proper, in this case it did not help since
the measurements were varying widely and apparently randomly. These problems would
have eventually stopped when the maximum iteration count and maximum cycle count
were reached, but this would have taken many hours, and when it finished, it would still
not have a valid measurement within the requested confidence level.

The timing loop code was modified to:

- Test for failure to converge and not continue to increase the repetition and cycle
counts when the test problem has executed for a significant amount of time and
shows highly variable performance measurements. In particular, when the time spent
executing the test problem (less null loop overhead) is greater than one second and
is varying between iterations of the inner timing loop by a factor of two, the test
problem is stopped (if the minimum number of cycles has been reached) and a
message informing the user of the variable performance is output to the results
file. Normally, a variation of a factor of two in the performance estimate of a test
problem would trigger an increase in the inner timing loop repetition count: this is

70

what was causing the ,rvry long execution times in the original version of the timing
loop code.

- Output a message after a test problem executes for 5 minutes (when the timing
loop gains control) so that the user will know that the test problem is ijot in an
infinite loop.

- After a test problem has executed for 30 minutes (and the timing loop gains control)
it will stop and report the current best estimate of performance of the test problem.

As the timing loop has been modified, test problems similar to the above will be marked
as unreliable. The result file may also contain additional lines of informative output
stating that the problem has executed for more than five minutes without converging.
It may also contain an additional line indicating that the test problem was prematurely
terminated (did not complete the maximum number of cycles which would otherwise be
performed) due to apparent instability in the measurements.

* There are several conditions which might result in the execution time measurement of a
test problem being considered unreliable.

- The timing loop may terminate by reaching a maximum limit rather than having
the measurements satisfy the confidence level for small percentage errors. For
test problems translating into a few machine instructions, a small absolute error in
measuring a test problem may correspond to a large relative error: consider a test
problem translated into a null statement. Since the value being measured will be
close to zero, dividing by this value can generate large relative errors corresponding
to errors whose absolute value can be arbitrarily small.

Some test problems which are translated into nulls may be measured as taking

a small amount of execution time due to noise in the measurement process. On
target systems which are measuring code expansion, it is appropriate to consider
test problems with small unreliable times and zero space as being measurement
noise and actually being zero time test problems.

- The test problem may perform operations with variable or inconsistent speeds. For
example, the time to perform a read from a disk file can vary based on the mechan-
ical properties of the disk, including: seek times; rotational latency; automatic soft
error recovery involving application of error correcting codes; retrying the physical
I/O read if it fails (only reporting a hard error to an application when the automatic
error recovery procedure fails); and disk cache buffering, whether in the operating
system or in the disk controller, will introduce very large variations in performance.

It is possible that an implementation may do something which makes the time to
execute a test problem vary with the number of times it is executed. This is not

71

expected, and is certainly not typical, but it is possible. For example, a system
which kept a journal of I/O operations and checked it for duplicates would build
an ever growing list of operations which it checked each time. If a system always
logged each operation, then the added overhead would be essentially constant and
the problem would be repeatable.

Contending jobs on the system can prevent stable measurements. This source of
errors may disappear if the test program is rerun at a different time.

In general, a test problem with an unreliable time measurement should be re-executed.
Since the conditions producing unreliable measurements are often transitory, simply re-
running the program will often be sufficient to produce a reliable measurement.

A user should not consider an unreliable measurement as a failure of the system under
test. In most cases, the test problem has been successfully translated. What fault
exists is in the ACEC timing measurement code not being able to determine a consistent
measurement.

The first steps an ACEC user can take to isolate an execution time error, assuming that
the error diagnostics are not self explanatory, are presented below:

" Recompile the program requesting no optimization and no suppression of checking. If this
modified version works without problems, it suggests an error in the compiler, although it
is possible that the program contains an implementation dependency, and the compilation
system changes the interpretation it makes based on the compilation options specified.

" If the test doesn't terminate (and doesn't generate any messages indicating that it is not
in an &,finite loop), then the user should check that the system can execute one iteration
of the test problem. Modify the program to remove the timing loop code and execute
the tesL problem once. This may be checked with a symbolic debugger, if available.

If a test problem fails consistently the first time it is executed, the debugging should be
fairly straightforward. On the cther hand, if the program executes several cycles before
failing, the fault will be harder to isolate.

6.2 RUNNING A SUBSET

An ACEC user does not have to run the full benchmark suite. They should select the test
programs they wish to run and then compile and execute only those programs. If they are using
the provided command files as models, they can modify them by not compiling or executing
the programs not of interest. After the preparation step of compiling GLOBAL and MATH
(and DBLMATH), an ACEC user can essentially compile (or recompile) the test suite in any
order desired. Test programs using multiple compilation units are organized as one text file

72

with multiple compilation units (presented in a valid compilation order). This packaging of

compilation units into files simplifies the procedures for compiling programs. The user simply

submits the source file to the compiler.
The FORMAT tool and the MEDDATA CONSTRUCTOR tool work without modification

on a subset of problems. FORMAT simply creates a smaller aggregate. The MED DATA
CONSTRUCTOR creates a MED DATA package containing only those problems appearing in

at least one input aggregate. Any problem which appears in some input aggregates but not in
others will be assigned an "err-no-data" value when missing.

Some ACEC users may be interested in the performance of one area, such as the tasking.
The user can find the test problems associated with tasking by looking under task in the VDD
Appendix V, "ACEC KEYWORD INDEX-i". The test programs which these test problems
are contained in can be found by referencing the VDD Appendix II, "TEST PROBLEM TO
SOURCE FILE MAP". The ACEC usually follows the convention that the file name containing
a test program has the same name as the main program. This makes it trivial to find the
source file containing a test program given the name of the program.

It is not true that systems have the same relative performance on all test problems. Some
systems do some problems much better, or much worse, than they do other problems. Running
a small subset of test problems means that an ACEC user may be surprised that some language
feature runs much slower than the others - and it could turn out to be a feature that is
widely used in their ultimate application area and was not included in the subset of the ACEC
selected for execution because they felt that "all systems will do it approximately the same."
An example may be file I/O, where performance differences of 100 times between systems are
not uncommon. Many users may initially feel that "if the program has to read and write, the
speed of the reads and writes will be determined by the speed of physical devices and should
be about the same on the similar hardware."

73

7 SYMBOLIC DEBUGGER ASSESSOR

The LRM does not require a compilation system to provide any type of symbolic debugger.
However, a good debugger can improve programmer productivity and enhance the desirability
of a compilation system. Many of the popular Ada compilation systems include a symbolic
debugger. The ACEC provides a set of debugger assessor scenarios (programs and sequences
of operations to perform) to enable users to evaluate debuggers. The scenarios emphasize
the determination of functional capabilities and not the elegance or efficiency of the user
interface. They include tests for capabilities which are commonly provided by debuggers and
for capabilities which are not widely supported. They include both Ada and non-language
specific capabilities.

The effort required to adapt this assessor can be fairly large. It will require the user to
understand enough about the system being evaluated to know whether certain capabilities are
provided by the system. An acceptable system can provide the requested capabilities in a
different fashion than presented in the ACEC sample systems. To decide that some capability
is not present will require careful review of the documentation on a system's debugger because
the capability may be present in an unexpected form - what is a separate command on one
system could be a qualifier to a command on another, and different names are given to similar
capabilities in different systems. If a user has to look up information in the implementation
reference manual before issuing each command, the adaptation effort should be expected to
take longer than if the user were already familiar with the system being evaluated. Completing
the debugger assessor on a system new to the evaluator should be expected to take at least
a week, although the tester will learn more about the capabilities and usability of the system
debugger than they might otherwise learn in several weeks of experimentation.

An ACEC evaluation need not always include the execution of each assessor. If the orga-
nization performing the evaluation is not concerned with debuggers, it might not perform the
evaluation. In a source selection environment, if analysis of performance tests results or library
assessor results show that a system is unacceptable, it will not be necessary to complete the
debugger assessor for that system.

Some systems have a compile time option which must be specified to permit the use of a
debugger. Programs not compiled using this switch may not be runnable under the debugger,
or may have access to a severely restricted set of capabilities. For the purposes of the ACEC
debugger assessor, a system with and without the option should be considered as different
products. It may appear to be unnecessary to know what debugger capabilities are available
for programs compiled with a switch requesting no debug support. However, it may be difficult
to use a debugger to isolate a problem in a program which only fails when the debug option is
not set.

Each debugger scenario tests a debugger capability, such as breakpoints. Each scenario
contains one or two programs and a set of debugging operations to perform. The ACEC user

74

must adapt the commands to compile and run the program, and the debugger commands, to
match the target system. The distribution tape provides the programs, named DBG*.ADA,
and a set of sample debugger command files for the VMS debugger, named DBG*.COM.
Comments in the programs and command files describe the purpose of each scenario and the
operations to be performed.

The operational characteristics of each debugger scenario are similar. The program will be
compiled, linked, and invoked under the debugger. The user will then set a breakpoint on the
function DESCRIBE whose source text explains the sequence of debugger operations which are
to be performed. Comments throughout the code will lead the user through the scenario. The
user will have to adapt the sequence of debugger operations for each system; the commands
should be recorded so that the results can be replicated if desired. It may be possible to have
the system log the operations. The log file can then be used to verify the results, and it may
also be runnable as a debugger command file, so that the sequence of commands can be easily
repeated.

The ACEC debugger assessor provides a template for recording results. To fill in the
template, the user will invoke a system text editor and replace the blanks in the template with
YES/NO indicators, or print a hard copy and fill in the blanks. The user may use a text editor
to insert comments into the report template. The user should note any operations which are
particularly awkward. The user may also wish to comment on the quality of the user interface,
the quality of the documentation, the ease of learning, availability of additional features, and
the relative importance of each scenario. The interpretation of the report is discussed in the
Reader's Guide, Section "SYMBOLIC DEBUGGER ASSESSOR".

To run the debugger assessor, adapt the sample command files to the compilation system
under test and perform the following steps in order:

* PREPARATION

Create directories and insert directory names into the command files SETUPDBG.COM
and CMP_._DBG.COM. The *.COM files refer to examples for DEC Ada on VMS. The
example command files use the following four directories:

TESTSUITEDIR Contains the test suite and debugger
command files.

TOOLSDIR Contains tools.

WORKDIR Used for compiling and running test

programs.

ACECLIBDIR Ada library directory.

75

* SETUP

Run SETUP DBG.COM to compile GLOBAL and the baseline files and prepare the work
directory. SETUPDBG.COM invokes three command files:

COMPILE-BASELINE Compiles the ACEC baseline files.
(The baseline files do not need
to be compiled again if they were
compiled before performance testing.)

SETUPTESTPROGRAMS Compiles the ACEC setup tests. (The
setup tests do not need to be run
again if they were run before
performance testing.)

PREPARE DBG DIR Deletes all files in the work directory

except the log files, and copies
CMP_1_DBG and the timing loop code
into the work directory.

Most of the debugger scenarios do not require MATH and the timing loop files. If a
subset of the debugger programs will be run, compiling GLOBAL and running PRE-
PARE DBG DIR may be all the preparation that is necessary.

* COMPILE AND RUN

Compile and run each debugger program individually. Invoke CMP-IDBG with the
program name, then invoke the program under the debugger.

CMP 1 DBG <- program name>

Copies one debugger program to the
work directory and compiles it.

RUN < program name > VMS command to invoke program

under the debugger.

Once in the debugger, issue the debugger commands needed to complete the scenario.
Record the results on the report template which is found in file DBG-TEMPLATE.TXT.
While executing the debugger scenarios, it may be helpful to have a listing of the program

76

and the sample debugger command file on hand. The program and command file contain

extensive comments to aid the user in executing each scenario.

* CLEANUP

After all tests have been executed, run CLEANUP DBG FILES.COM to delete miscella-
neous files and program library units which are no longer needed.

CLEANUPDBGFILES Deletes unneeded files.

Assumptions made in the debugger scenarios and command files:

" It is assumed that breakpoints occur before execution of the line they are set on.

" Line numbers given are for the actual line number of the file (blank lines and comment
lines are numbered).

* The example command files compile the programs with no optimization. Some debuggers
may not function on optimized code, or may perform poorly. It is suggested that users
run the debugger tests on unoptimized code. If desired, another evaluation may be
performed on the optimized tests. Behavior with and without optimization is generally
so different that optimization and no-optimization can be considered to represent different
compilation systems.

77

8 PROGRAM LIBRARY ASSESSOR

The LRM levies onI' minimal requirements on a program library system - after a unit is
compiled into a library it shall be possible to subsequently compile units which reference it. The
LRM suggests (Section 10.4 paragraph 4) that a programming environment provide commands
for creating the program library of a given program or of a given family of programs and
commands for interrogating the status of the units of a program library. The form of these
commands is not specified by the LRM.

The effort required to adapt this assessor can be fairly large. It will require the user to
understand enough about the system being evaluated to know whether certain capabilities are
provided in a system. An acceptable system can provide the requested capabilities in a different
fashion than presented in the ACEC sample systems. If a user has to look up information in
the implementation reference manual every time they try to adapt a scenario, the adaptation
effort should be expected to take longer than if they were already familiar with the system
being evaluated. Completing the program library assessor on a system new to the evaluator
may require a week, although when completed the tester will have learned more about the
capabilities and usability of the system's library than they might otherwise have learned in
several weeks of casual use.

An ACEC evaluation need not necessarily include the execution of each assessor. In a
source selection environment, if an analysis of results of the performance tests or the debugger
assessor show that a system is unacceptable, it will not be necessary to complete the library
assessor for that system.

The ACEC program library assessor capability is designed to determine whether a system
supports selected capabilities. It also provides for the collection of some performance measure-
ments - elapsed time and disk space usage. It contains a set of scenarios to be performed on
a system and instructions for evaluating system responses.

The scenarios consist of compilation units and sequences of operations to perform on a
program library. ACEC users must adapt the scenarios to each target system. The scenarios
emphasize functional capabilities and this emphasis will minimize the role of subjective biases
- the questions are not whether the evaluator likr.. the way the system provides a capability,
but simply whether it is supported.

It is possible that based on a review of the system documentation an evaluator may (in-
correctly) conclude that a capability is not supported when it actually is just not described in
the manuals where the evaluator expected it to be. Different systems can provide the same
capability in different ways. One system may use a separate command for something which
another system provides by supplying a specific set of parameters to a more general command.
ACEC users should carefully review system documentation (and perhaps contact the vendor)

before deciding that a capability is not supported.
The scenarios should be equally applicable to a "point-and-shoot" graphic based user inter-

78

face as they are to a command-line based user interface. The sample DEC/VMS command files
distributed with the ACEC provide a command-line interface to a program library manager, and
contain comments discussing both the operations to be performed and the expected results.

Some library systems may have features not exercised by the set of scenarios. The library
assessor template provides a space for user comments which can be used to report the presence
of additional capabilities.

In some compilation systems, the mechanisms which provide the capabilities the scenarios
test will not be isolated in a set of "Ada program library utilities." For example, a system may
rely on file naming conventions to map from Ada compilation unit names to host operating
system file names and permit the use of "normal" host operating system tools to provide some
capabilities - such as reporting the disk space used by a compilation unit. Since the ACEC
library assessor is concerned with the presence of a capability, this would satisfy the ACEC
assessor, assuming that the technique was reliable. On a system which prefixes the names of
subunits with the names of their parent units, it may be possible to use wild-card options in
the operating system tools to manipulate a unit and all of its subunits as a group (for example,
to determine the size of them all). However, if the host operating system limits file name
lengths, it may map "long" Ada unit names using a different algorithm and this would defeat
the unit/subunit grouping. Because this would make the technique of grouping unreliable, an
ACEC library assessor should iiot consider such a system to provide the extended capability.
On such a system, the name mapping is implementation dependent and users need to verify
that the actual mapping is as simple as it appears to be when only short names are used. The
ACEC library assessor scenarios provide some examples which might stress a system, but users
must be aware of potential implementation dependent restrictions.

Each library scenario contains comments which describe what it does (or attempts to do).
Most will compile provided compilation units into a library and then use the provided tools
(library 2ad host operating system commands) to perform some operation. They may request
that the user record elapsed time and disk space, or verify that the requested operation has
been performed.

The distribution tape contains the referenced compilation units and a set of command files
to be adapted to different systems.

Capacity limits may be exceeded when running some of the library assessor tests. A user
should attempt to determine whether a limitation is "hard" (for example, no Ada library can
contain more than 1024 units) or "soft" (the system ran out of disk space during the testing).

The ACEC library system provides a simple template for collecting results. Users may print
the form and fill it in by hand, or edit an on-line version. There are provisions for users to
add descriptive comments about individual test problems, general comments about system
operations, and subjective opinions.

The library assessor is organized as follows:

9 A set of compilation units.

79

These units are named LIB*.ADA. These Ada source units are compiled in the library
assessor scenarios, as directed by the command files.

* The command files LIB*.COM.

These files will create and manipulate the program library structure, including compiling
the LIB*.ADA units into it. Users must adapt the command files to the compilation
system being evaLiated. The command files are provided for the DEC Ada (VAX VMS
host/target) compilation system. The commands for this system can serve as models in
porting the library assessor to other compilation systems.

The file LIB.COM is the main driver for the library assessors which will execute all the
assessors in turn.

These files contain detailed discussion of t,ie operations to be performed and the evalu-
ation of system responses.

" A file LIBTEMPLATE.TXT.

This file is a template which will be filled in by a user to report findings from individual
scenarios. The evaluator will fill in:

- Yes / No answers to questions on the presence of individual capabilities.

Guidance is provided in the command file comments in areas where judgment calls
may be necessary.

- Some scenarios call for the recording of execution time in the template.

- Some scenarios call for the recording of disk space usage in the template.

- Provisions are made for general comments.
A user may want to report that a special case of a capability is provided, but not the
full generality requested for in the library assessor scenario. Capabilities not tested
for in the assessor scenarios can be recorded as comments in the template for later
review.

80

9 DIAGNOSTIC MESSAGE ASSESSOR

The LRM requires a compilation system to reject iiivv/al programs, although the definition of
illryl does not include all programs containing violations of the standard. The LRM does not
specify the form or content of error or warning messages. The purpose of the ACEC diagnostic

system assessor is to:

* Determine whether the diagnostic messages clearly identify the condition and provide
information to correct it.

* Determine whether warning messages are generated for various conditions.

The ACEC diagnostic assessor tests include examples of both illegal programs and programs
containing "suspicious" conditions which the ACEC user will pass through the compilation

system. The generated diagnostic messages (if any) will then be manually compared, using the
information provided with each problem, to see whether the message provides a set of specific
information. A template will be completed based on this comparison.

Some compilation systems have flags which affect the number and type of messages pro-
duced. The printing of warning messages may be suppressible - and this may be the default
condition. For the diagnostic assessor tests, the ACEC user should specify the compilation

system options which provide the most thorough checking. Several systems provide an option
for syntax checking which executes quickly but only performs a context-free parse of the source
program and so will miss many error conditions which require context sensitive information to
detect - this is not the option which should be used for the diagnostic assessor testing.

Each diagnostic problem contains comments which describe the condition and point out
any specific pieces of information to look for in the generated message. For example, one
diagnostic problem ends a subprogram before ending an "if" statement within it - the user is

asked to see whether the diagnostic message identifies the location of the non-terminated "if"

statement.

The distribution tape contains a set of compilation units named DIA*.Ada and a set of
command files to compile and link the programs which will have to be adapted to different

compilation systems. These command files are:

* DIAGCOMP.COM - This compiles the units which test for compilation errors.

* DIAGLINK.COM - This compiles and links the units which test for linker errors.

• DIAGNOSCOM - This is the driver file which compiles all the diagnostic compilation

units.

* DIAGFILL.COM - This will generate a file large enough to fill up a disk. It is used if

there is no facility to set a disk quota

81

The ACEC diagnostic assessor provides a template for collecting results and a tool to analyze
a completed template and produce a summary report based on it. To fill in the template, the
user will invoke a system text editor and replace the blanks in the template with YES/NO
indicators. The analysis tool DIAGREAD.ADA is an Ada program which reads a template from
standard input and writes a report to standard output. The interpretation of the report is
discussed in the Reader's Guide, Section "DIAGNOSTIC ASSESSOR".

There are several programs which should be run interactively, including DIAR01A, which

will run indefinitely or until the user decides to interrupt it.
The test, DIA L04A, is designed to explore what happens on a system which runs out of

disk space. The user has two choices here:

e to set a disk quota to a low enough limit to exhaust disk space during the compile and
link process

e or, to use a com file (DIAGFILL.COM) which is designed to fill up your disk (on a VAX
VMS system). Use this alternative with care.

82

10 ANALYSIS

There are two analysis tools provided with the ACEC: MEDIAN and SSA (Single System
Analysis).

The MEDIAN analysis program compares sets of performance data from different compi-
lation systems, each of which has executed the same release of the ACEC. It assumes that
the performance data can be modeled as the product of a factor for each Ada compilation
system and a factor for each test problem. MEDIAN computes these factors, using a sta-
tistically robust data analysis approach. It then calculates the residual factors for each test
problem on each compilation system. A small residual factor indicates that the actual timing
for the test problem is faster than would be predicted, based on the average performance of
the system over all problems and the average performance of the problem over all systems.
Residuals which are either small or large point out places where a system is performing better
(or worse) than expected. MEDIAN uses heuristics to place indicators, drawing attention to
residual factors which are exceptionally small (or large). Small residual values may indicate
places where an optimization has been particularly worthwhile, or where the underlying target
machine hardware is particularly well suited to executing the test problem efficiently.

The MEDIAN program produces additional data showing goodness-of-fit of the data model
and the variation in the performance measurements. This additional output and its interpre-
tation are described in depth in the Reader's Guide, Section "MEDIAN OUTPUT".

The SSA program analyzes relationships between test problems executed on one system,
where there is some a priori relationship between results expected, or where inferences can
be drawn about a system based on comparing results of related test problems. For example,
some test problems are optimizable and some are hand optimized versions of the same logical
operations; if the execution time for both versions is the same, it can be inferred that the
system is either performing the intended optimization or another optimization of comparable
effectiveness.

The rest of this section in the User's Guide is concerned with the steps necessary to format
the performance data so that MEDIAN and SSA can analyze it.

10.) PREPARING THE DATA

The MEDIAN analysis tool is an Ada program which processes a two dimensional array (TIME)
of performance data, represented as a floating point type. The dimensions of this array are two
enumerated types: the first is SYSTEMS, which declares an entry for each Ada compilation
system being compared; the second is PROBLEM, which declares an entry for each test prob-
lem. These enumerated types, and the array of performance data reflecting the measurements
obtained by executing the ACEC test suite on each different compilation system, are declared
in the Ada package, MED-DATA.

83

To compare the performance results between several systems, the ACEC user will run
the FORMAT tool and the MED DATA CONSTRUCTOR tool to produce a variation of the
MEDDATA package. The package will contain:

" A declaration of type SYSTEMS assigning unique identifiers to each system being com-
pared.

" A declaration of type PROBLEM assigning unique identifiers to each test problem be-
ing considered. Some users may choose to add additional test problems of their own
construction, or to exclude some test problems. If tests are added, the user must mod-
ify the enumeration type PROBLEM in the MED DATA CONSTRUCTOR program to
include the new test problem names and the enumeration type CMP_UNITS to include
the names of the files containing the new tests. No modifications are needed to run the
MEDDATA CONSTRUCTOR on a subset of problem results.

" A declaration of the array TIME, initialized to contain the performance measurements
obtained from executing each problem on each system. Each row of the array TIME
represents the performance data from a compilation system. The performance data for
each test problem is specified by using a named association giving the test problem
name and corresponding performance measurement (or coded value indicating data is
not available).

Test problems for which results are not available are indicated in the array TIME by
coded values. Any non-negative value is assumed to be a valid measurement; negative
values are used to encode various types of missing data.

The FORMAT tool accepts as input a file containing the output of each ACEC test program
(where this is available) and generates as output two files. Each file contains an initialized array
aggregate specifying the test problem name and performance measurement for each ACEC
test problem which reached normal completion and output performance measurements. One
output file contains an aggregate of execution time data, and the other contains an aggregate
of code expansion size data. The aggregates created by running FORMAT on the output
of the test suite can be combined into versions of the MEDDATA package by running the
MED DATA CONSTRUCTOR program.

An ACEC user could use a text editor to format the test results into aggregates to be
input to the MED-DATA CONSTRUCTOR. This could be tedious and time consuming, and
provides opportunities for introducing transcription errors. When each test problem is executed,
the timing loop code writes, to Ada STANDARD OUTPUT, the performance measurements
for that test problem. On target systems where STANDARD-OUTPUT can be saved in a file
for later processing, it is possible to automate the extraction of performance data from this
file. The FORMAT program does this.

84

One simple way to save STANDARD-OUTPUT in a data file on VAX VMS is to run the
test suite as a batch job; STANDARD OUTPUT will then be written directly into the log file.

On a UNIX system, STANDARD-OUTPUT is redirected to a file name of your choice. There
are a few problems which must be run interactively - primarily to measure console output
performance (CIO.A and IOTEST4.A), and to test whether a task waiting for console input
blocks progress of other tasks in the system (ASYNC2.A and ASYNC4.A). These programs
cannot be run as a batch job. Terminology is somewhat operating system specific, but the
concepts of batch jobs and log files are understandable to most programmers, if not to all
operating systems. FORMAT reads the log file and creates data aggregates specifying (using
name association) the test problem name and the performance measurement for that test
problem. It creates an aggregate for execution time and for code expansion size, each in a
separate output file. It can do this because it knows the format that the test problems use
for generating output (the format is column specific. Refer to the Reader's Guide, Section
"OPERATIONAL SOFTWARE OUTPUT", for details). FORMAT reads one input file to
create its output. If the user has executed the ACEC test suite as several separate jobs, then
the individual log files should be combined into one file before presenting the file as input to
FORMAT. Alternately, the user could run FORMAT on each piece and merge together the
data aggregates generated from FORMAT. Using FORMAT will speed up extraction of the
performance data, and will remove the possibility of transcription errors.

Not all bare machine targets will support a file system. If an ACEC user cannot save
STANDARD OUTPUT in a file, it will be necessary to manually edit the data aggregates with

the values of the performance measurements obtained. Even if the target system supports only
a console for output, it may be possible to replace the physical console electronic connection
with a connection to a computer which is programmed to operate as a simple terminal and also

save all the output in a file. To simplify processing, it is recommended that the user who has
to manually transcribe performance measurements construct the same type of data aggregates

for each system that FORMAT would.
The next step in analyzing the data is to construct the MED DATA package, which is

used to pass the data to MEDIAN. The execution time, code expansion size, and compile time
data are analyzed in separate runs of the MEDIAN program, and a MEDDATA package must
be constructed for each type of data to be analyzed. The MEDDATA package is produced
by running the MED DATA CONSTRUCTOR program with the data aggregates produced by
FORMAT as input. Before running the MEDDATA CONSTRUCTOR program, the user must

perform the following steps:

* For each system to be compared, the user must prepare one data file containing an
aggregate initialized with execution time, code expansion size, or compile time data.
FORMAT produces 2 files, one for execution time data, and one for code expansion size
data. The collection of compilation times is not automated. If compilation times are to

be compared, the user must manually construct an aggregate for compile time data, or

85

write a program to extract the times from the log file.

" The user must prepare the SYS-NAMES file containing the type of measurement rep-
resented by the data values (execution time, code expansion size, or compile time), the
names of the systems to be compared, and the names of the files containing the system
aggregates. The format of the file must be as in the following example:

time - - or "size", or "compile", depending on measurement
system-1-name
- - Up to 20 lines of System One comments and description,
- - including version number of compiler and operating system,
- - processor configuration, etc.
system-l file-name
system 2 name
- - Up to 20 lines of System Two comments and description.
system_2-fil ena me

" The user must construct a command file to assign the input file name to the logical name
"sysnames" and call the MED-DATA-CONSTRUCTOR program. Two model command
files are provided: MED DATA CONSTRUCTOR.COM for DEC Ada under VMS, and
MEDDATA-CONSTRUCTOR.UNX for MIPS Ada under UNIX.

The output of the MEDDATA CONSTRUCTOR is a MEDDATA file containing the Ada
package MED-DATA. The file name extension will indicate the type of data in the file (.tim
for execution time, .siz for code expansion size, or .cmp for compile time). This file should be
compilable with no modifications.

The MEDDATA CONSTRUCTOR tool is expected to run on any system which will run
MEDIAN. Size may be a problem on - ie systems, however, because the program uses a
large internal data structure. If the user is unable to run the MED DATA CONSTRUCTOR
program, the user may still be able to run MEDIAN with a small MEDDATA package. The
user can manually construct a MED-DATA package by editing the dummy MEDDATA file
from the ACEC distribution tape to include the systems the user wishes to compare. In editing
the package, the user must modify the declarations ol the enumeration type SYSTEMS to
include a unique identification for each system being compared. The initialization of each row
of the array TIME is accomplished by including text of the form:

86

SYSTEM X =
{ ,,JI:. [,,r S K5 TEA X frm. FORMAT },

for each system.
There are several sets of sample data (aggregates generated by FORMAT) included on the

distribution tape which can be included for comparison purposes. These sets of data reflect
results obtained during the development of the ACEC Software Product. They are:

DATA.ADA Average of all targeted systems
DATA.VAX Average of VAX targeted systems

During development, the ACEC was executed on 5 trial systems to demonstrate portability. The
first file is an aggregate reflecting the problem factors for these systems. The other file reflects
the average problem factors for the VAX. There are two compilation systems for this target.
A comparison of different compilers for the same target machine permits a direct comparison
of performance of the different compilers, since the machine idioms will be the same for all
compilers for the same target. Where an ACEC user is only testing one system, the sample
data will be the only comparative information available.

After MEDDATA is constructed reflecting the different systems to be compared, it is then
compiled, and then the program MEDIAN is compiled. When MEDIAN is linked and executed,
it will generate as output the comparative report. For details of the report, refer to the Reader's
Guide, Section "MEDIAN OUTPUT".

This process is shown graphically below.

87

SYSTEM 1- LO G FORMAT DT

SYSTE2LOG FORMAT

MED-DATA MED-DATA
CONSTRUCTOR PACKAGE

(SYSTEM3.LOG FORMAT DT

(SAM P LE -DA TA

Figiiic 7: CONSTRUCTING MVED-DATA

88

The MEDIAN program assumes that all performance measurements are non-negative float-
ing point values. Negative values are used to encode error conditions. Different error conditions
use the following mapping:

problem-name =->numerlc-value,
where

numeric value is a nonnegative measurement

or, in the case where an error was detected,

problem-name -> XXX,
where

XXX is a negative numeric value with one of the following interpretation
err at compilation time

-1.0 =>error in problem during compile time
err -at -execution ti me

-2.0 =>error in problem during execution time
err no data

-3.0 =>test not attempted; may work, but no data
available

err dependent test
-4.0 >test not appropriate-system dependent optional

feature
err-packaging

-5.0 =>test not available due to packaging. It may
work, but was included in another test which
failed.

err-unreliable-time
-6.0 = >test ran, data considered unreliable

err-withdrawn -test
-7.0 =>test problem withdrawn

These numeric values are declared as named numbers in the package GLOBAL.
Test problems which failed at execution time during development of the ACEC often have

exception handlers (or test the results of computations) and write an error code to STAN-
DARD OUTPUT if they detect an execution time failure. FORMAT tests the confidence level
indicator and outputs an error code for unreliable measurements when this indicator is present.
Other failing test problems will have to have their error code value specified. If a test fails due
to a compilation error, the user can edit the aggregates produced by FORMAT to include the
err at compilation time code for that test.

89

FORMAT is coded so that when the indicator is set reflecting that the requested confidence
level in timing measurements was not achieved it will write an "err unreliable time" code to
STANDARD-OUTPUT for that problem. A user may wish to proceed using the measurements
obtained. Such a user has two choices:

" They may edit the output of FORMAT, replacing the error code with the measure of time.
For a small number of unreliable measurements, this is straightforward and effective.

" They may modify FORMAT so that it does not generate an err-unreliable-time error
code when the confidence level indicator is set, but always outputs whatever actual
measurements it finds. This is marked in the program text - there is only one place
in the procedure FORMAT which examines the input file for the bad data indicator and
replaces the "TIME" variable with the error indicator when it is set.

The MED.DATA package produced by MED-DATACONSTRUCTOR will fail to compile
if the system names specified in the SYS-NAMES file are not unique and legal as enumeration
literals. It should not be necessary to edit the MEDDATA package. The user need not specify
values missing from the aggregates, and need not remove duplicate results. Missing values
will be assigned an "err-no-data" value, and all but the last instance of a duplicate test result
will be commented out in the output. If the user does not wish to use the last measurement
obtained for a test which was run more than once, the aggregate may be edited.

Having users compile a package which declares initialized data for input to the main program
is a bit unusual. It was selected to simplify the processing of performance data from bare
machines which have no disk file processing capability. The expectation is that these systems
11li support console I/O, permitting Ada programs to output text, if only for ease in validation.
It may not be possible to extract machine readable output files from such a system. To facilitate
the comparison of performance data from such systems, it is important to have a method of
entering data which is human readable and intuitive. Using named aggregates is a method
which provides a simple operating procedure. After each test program is executed, the data
aggregate for the system will be filled in with the results from the test problems which executed.
The test programs can be run, or rerun, in any order, and the data does not have to be entered
in a specific order (if positional association were to be used, then the risk of entering data for
one test problem which accidentally is interpreted as applying to another test problem would
be very large with over a thousand test problems).

If the ACEC were to assume that all target systems on which the test programs were
executed supported a file system, t would be easy to design a more automated and "user
friendlier" method of extracting performance data and presenting it to the analysis program.
The ACEC project chose not to simplify operations on "friendly" targets at the expense of
unduly complicated processing on bare machines.

90

10.2 RUNNING MEDIAN

This section gives instructions on the use of MEDIAN.
The report produced by MEDIAN is tabular. If more systems are compared than will fit

azross one line of output, the program will output additional pages as needed. MEDIAN will
not write more than 80 columns on a line unless the globally defined variable "max line length"
in MEDIAN is changed. Increasing the line length (to say 132) would print an extra column of
data on each output page. This modification permits the production of more compact results
when suitable output devices are available. The choice of 80 columns permits easy display on
most terminals.

To use MEDIAN to compare code expansion sizes, the user will run the MEDDATA_
CONSTRUCTOR program using the code expansion size aggregates generated from FORMAT,
rather than the execution time aggregates. The processing required to compare expansion
sizes is identical to the execution time analysis. For test problems which are detected to fail
at execution time, a size of zero is always generated. This is not intended to be meaningful.
No changes to the code in MEDIAN will be needed. The code expansion sizes are reported
in bits and the "raw" data is directly comparable between systems having different values for
SYSTEM.STORAGEU NIT.

To use MEDIAN to compare compile times, the user will collect and format compile time
data for input to the MEDDATACONSTRUCTOR. Problem names in the compile time aggre-
gates will be the names of compilation units rather than the names of individual test problems.

10.2.1 New Versions of the AC(ECI

This section guides the user who has already run the ACEC test suite once, but now has an
updated release of the ACEC.

10.2.1.1 Reruiuiiiiig the tests

Tests with the same name will remain the same from release to release. New tests may be
added and old tests may be removed. If it becomes necessary to modify a test problem (it was
determined to contain invalid Ada code), the original problem will be withdrawn and a new
problem with a different name entered to reflect the corrected test problem. A test problem
with the same name between releases will have essentially the same code.

10.2.1.2 Reamalysis

The MEDIAN program compares sets of data. For it to be meaningful, the individual test
problems on each target system must represent the same problem on all targets.

The ACEC is intended to track performance of systems over time, and the test problems
from the first release will be retained in subsequent releases, unless error reports force them to

91

be dropped. Measurement data of a compilation system against the first release of the ACEC
can be directly compared with data from that system on the second release of the ACEC -

test problems not present in the first release should be marked as unavailable to MEDIAN
("err-no-data").

When a new release of a compilation system is made, the identity of the test problem will
not change (the ACEC has not been rereleased), but the test suite needs to be rerun. The
measurements on all problems may have changed, and bug fixes may make problems which

previously failed now work (or make previously working problems fail).

10.3 INTERPRETING RESULTS

The Reader's Guide, Section "HOW TO INTERPRET THE OUTPUT OF THE ACEC", pro-
vides detailed instructions for interpreting the results produced by executing the test suite and
analysis tools.

10.4 SSA

The ACEC single system analysis (SSA) tool, which will provide ACEC users with information on

the performance characteristics of a single system, is similar in operation to the MEDIAN tool.
It processes performance data aggregates as generated by the MED DATA CONSTRUCTOR

tool.
The SSA tool works by comparing the results from related test problems, such as where

one problem is a variation of another: for example, with and without a pragma specified; or an
optimizable and a hand-optimized version of the same computation; or different coding styles
to accomplish the same goals.

As with MEDIAN, it is possible to apply the SSA tool to a subset of test problems. In cases

where there is no data available for any of the related problems in a set, the SSA tool will
not produce a main report -- although it will generate a missing data file (unless suppressed)
which lists all the test problems for which there were no results available.

The actual report consists of four sections (main report, table of contents, missing data
report, and summary), which are discussed in the Reader's Guide, Section "SINGLE SYS-
TEM ANALYSIS". The output formats assume 80 column lines and 66 line pages; no special
formatting is done.

10.4.1 System Specification File

The SSA tool begins by reading from a system specification file which provides file names

containing the performance data aggregates and the SSA options. The name of this file is

coded into the procedure readSpec as "ssa.txt". The only required line in this file is the

92

system name designation. All other information can be inferred from this name. The format

of this file (" ssa.txt") is described below:

93

s'~ystem name - Lname -(REQUIRED

i .n put file nam~es timle 1fsize 11compile
-- default tilm. .siz, .,cmp

m*,issing report - True IFalse

-- default -- True

o-'utput file names freport Jfmissing Jcontents (summary
-- default .. rep. .mls,. con 'sum

Fjwn'R:SINGLE SYSTE1,1 ANALYSIS SPECIFICATION FILE SYNTAX

94

The format is generally free form following these rules:

" Lines must be less than or equal to 80 characters.

" Lines that do not begin with 's', '1', 'm' or 'o' are ignored, ex, ept for continuation lines.

Capital letters are acceptable

" Lines that begin with 'i' or 'o' call for special handling

- All file names must be provided, if any are provided However, 'dummy' names may

be used and the program will work. (If all input names are dummies, no data will

be read, and only a missing data report will be produced.)

Continuation lines: file names may be up to 80 characters, so they may be placed

on a separate line. There is no continuation line symbol Processing continues until

all expected names are found.

File names must be separated by a space. a comma, or a new line. A name must

be contained on a single line.

This is perhaps more clearly explained by an example.

cqr

S vax

I -vax.tirne,vax.size. vaxcompile
rni false
o-s vax. rep. vax mis.

vaxcontents VaX.sLrn

Ijlitir 9: SINGLE SYSTEM ANALYSIS SPECIFICATION FILE EXAMPLE

96

This file directs the SSA program to read in the execuion time data from a file named

vax time", the size data from a file called 'vax size, and the compile speed data from a file

titled 'vax compile" If tile line beginning with w'I" were excluded, then the default values

for these file names would be vaxtim ' vax 17 -vax cmp The value for the missing

data flag is false, the default value would have been true In this example the output files are

explicitly set to the same names that would have been given by default, except for tile name of

the contents file Notice that all file names muit be provided. if any are given The program

reads names in a set order for the nain report. the missing data report. the contents file, and

for the summary file Furthermore. note that a missing data file name is required. even if the

missing data flag is set to false This file name will not be used. and no missing data file will

be opened in this case

10.4.2 [iip)tit l) la Files

The SSA program expects the three input data files to possess certain essential characteristics

Any data files produced by MED DATA CONSTRUCTOR follow this format. and should not

require any modification However. users may have prepared their own files Actually. if they

prepare files like FORI\AATs output. they can run MED DATA CONSTRUCTOR. They still

might have to prepare their own if they cannot run MED DATA CONSTRUCTOR.

The procedures which read this input data are named readTime, readSize. and readCompile

All three of these procedures call the procedure findStart to skip the preliminary lines and find

the proper starting point. The essential characteristics expected by findStart are

" Lines must be less than or equal to 80 characters

" Strings to be found must be the first nonblank characters on the line.

" The system name must be repeated twice. The match is case insensitive.

" The literal '- " is found.

" The next line is skipped.

The data is an Ada aggregate, with some limitations on the format. The following three

line pattern, with the second two lines optional, is reqLuired. An ACEC problem name must

always be the first nonblank string on the line it appears on Certain Ada comments signal

the presenre of additional information in the Pxecution time file All other Ada comments are

ignored

e ACE(- problem nani floating point number

0 --<<< additional numeric data. from ACE C output

97

* -- >>> ancillary data. from ACEC output

* -- All other Ada comments are ignored

o Each problem name must be the first nonblank string on a line

The data is read, until a line beginning with the stop signal)". is found

98

- whatever ignored -
system name - (REQUIRED)

- whatever ignored -

system name] - (REQUIRED)
- whatever ignored -

- (REQUIRED)
. REQUIRED)

- data, in the following pattern. the second two lines are optional-
ACEC problem name --- [floating point number

-- < additional numeric datn. from ACEC output
-- >>> ancillary data, from ACEC output

-(REQUIRED)

- whatever : ignored-

Fi-,i, i): SINGLE SYSTEM ANALYSIS DATA INPUT FILE FORMATS

99

10.4.3 Other 1)ata Files

The SSA program is contained in one file. SSA.Ada However. there are several additional
data files which must be present These files are all of the form * SSA- LF.SSA, OPT SSA,
RTS.SSA. and STYLE.SSA These files contain the templates for most of the tables. The files
are standard text files, therefore, they are in human readable form, but editing might cause the
SSA program to fail.

1 0.4..4 \leasiirenivW (iiifs

The SSA program assumes that execution times are in microseconds, which are the units used
in the standard ACEC timing loop (although a change of unit here would make no difference
to the generation of the report). Program size is assumed to be in bits, which again is the
standard unit generated by the ACEC timing loop code, but results are presented in bytes.
Compile speed is assumed to be measured in seconds, but results are presented in minutes.
A conversion is performed when the compile speed data is read into the SSA program, Since
the user must gather and format the compile speed data, it may or may not be convenient to
provide the data in seconds as the SSA program expects. Regardless of the units, the SSA
program expects these times to be converted into minutes when the data is read. To facilitate
this conversion, there is a conversion constant in the input procedure readCompile which must
be modified appropriately. The relevant lines of code are given below. The compile time is
read "'as is" and then multiplied by the constant "convert" to change the units to minutes.

PROCEDURE readCompile IS

convert CONSTANT := 1.0 / 60.0 ; -- convert seconds to minutes

BEGIN

compileArray fileN).time compileArray (fileN).time * convert

END readCompile

10.4.5 liij)leiiientl a| ioll De)eldenICies

The SSA program does use large data aggregates, but it should run if MEDIAN runs. In
addition, the SSA program at one point needs an integer type larger than 16 bits. This type
(integer 32) is used for computing total line counts in the procedure compilationReport. This
could be worked around on a system which only supports 16 bit integers by using real numbers
for the totals.

100

11 CONSIDERATIONS FOR CODING ADDITIONAL
TESTS

Each test problem is measured by inserting it into a template which will, when executed,
measure and report on the execution time and code expansion size of the test problem contained
within it. as discussed in Section 3.2.3.2.1.

There is an extensive discussion in the Reader's Guide. Section "CORRECTNESS OF TEST
PROBLEMS", on things which might make a potential test problem invalid. The basic point
to remember is that the test problem must be constructed to meet the following guidelines:

" The problem can be repetitively executed, and will follow the same path on each execu-
tion. In particular, the same control paths should be taken, and the repeated execution
of arithmetic assignments should not produce numeric overflow (a test problem which
increments an integer variable on each repetition is a mistake since it will eventually raise
a CONSTRAINT ERROR),

" An optimizing compiler cannot 'unduly" optimize the problem. In particular, it should

not be able to detect that the test problem is invariant with respect to the timing
loop code and only execute it once. Most test problems will need to have variables
initialized to insure proper execution (for example, to prevent numeric overflow or other
constraint errors). and if this initialization code is incorporated into the test problem using
literal assignments. an optimizing compiler may be able to fold successive statements,
essentially performing the intended test problem at compile time. While tests for folding
are important, if that is not the purpose of the test problem being developed, it should
be avoided.

* The test problem should be valid Ada. It should not rely on implementation dependent
features of a system, unless the purpose of the problem is to test a feature which is
71h 1e 0lYt implementation dependent. For example, values of variables should be defined
before being referenced, even though an ACEC user may be developing potential test
problems on a system which assigns uninitialized variables to zero, as is permitted by the
LRM. Ada programs can be written which depend on the order of evaluation of library
packages. A good test problem will work with any valid (as defined by the LRM) order
of elaboration. and not just the one adopted by the system used to originally develop the
test problem.

A test problem which calls assembler language procedures is implementation dependent,
and so may require modification for each target system, but is important to test. Similarly,

some implementations may impose various restrictions on capacities or on Chapter 13
features (such as representation clauses) or the tying of tasks to interrupts. Although

101

implementation dependent, it is important to include tests for these features in a general

test suite.

Test problems should avoid implementation dependencies. For portability, test problems

should not use the predefined types INTEGER, and FLOAT. since their range is imple-

mentation dependent. In particular, in the LRM 3.6.1. it states that a discrete range

where both bounds are of type iiimui., ' .stif r will be implicitly converted to the pre-

defined, and implementation dependent, type INTEGER. This should be avoided, since

INTEGER'SIZE may vary ,,j t/, ,m, , iq, t based on implementation decisions in the

compiler. In particular, a test problem should not contain a code fragment such as

F(OR 1 10 1,OOP ... END LOOP;

where the type of the FOR loop index "i" will then be the predefined implementation

dependent type INTEGER. It is preferred in such cases to use a code fragment such as:

FOR i in global'int (1) .. global'int(10) LOOP ... END LOOP-

or

FOR i in global'bigint(1) . global'bigint(10) LOOP ... END LOOP-

which will effectively request a specific size. In the example cited, even when no syntax

errors are introduced by the use of one type or the other, there may be considerably
different timings and implications on register usage between the two versions. When a

discrete range in an array declaration is used, the difference in performance could force

the use of an unnecessary integer type for all index computations.

The simplest way to comply with this directive is to use the type defined in the package

GLOBAL. But. if user programs derive their own types from the universal types, that is

also acceptable.

" To use MEDIAN to compare results, including those on user defined test problems, it

is necessary to modify 011/Y the program MED DATA CONSTRUCTOR. The program

M\AEDIAN itself need not be changed to include additional problems. The changes to
M ED DATA.CONSTRUCTOR are straightforward. The user must include in the defini-

tion of the enumerated type PROBLEM the names for the user defined test problems

The user must include in the definition of the enumerated type CMP UNITS the names

of the new programs containing the new tests. Then the MED DATACONSTRUCTOR

program must be recompiled

* Naming conflicts with the timing loop variables have to be avoided. A user can insure

this by studying the package GLOBAL. The simplest way is to define their test problem

as a procedure with no parametcrs and compile it into the Ada program library. A

102

standardized driver program which includes the timing loop code can then call on this

procedure

A form for submitting a change request and a sample template is included in Section

12 2. The ACEC Reader's Guide. Section "CORRECTNESS OF TEST PROBLEMS". contains
additional discussions on constructing test problems

Candidate test problems should minimize the use of obvious implementation dependencies.
such as calls on host operating system routines, and specification of FORM parameters to I 0
statements Programs including UNCHECKED DEALLOCATION and UNCHECKED CONVERSION
are not prohibited, but some uses of UNCHECKED CONVERSION will be more portable than
others A program performing boolean operations on integers may try to convert INTEGER to
BOOLEAN. perform AND, OR. XOR. or NOT. operators and convert back to INTEGER. This
may work on systems where BOOLEAN and INTEGER have the same size. A more portable
approach would be to define an array type of packed BOOLEAN with range 0 .. INT'SIZE
(where INT is a type derived from INTEGER with a range sufficient for the integer variables
being used in the program). and converting between this array type and INT. The latter ap-
proach reqluires that packed boolean arrays are supported, but if this is done, it should work
correctly on systems which have different default sizes for BOOLEAN and INTEGER.

103

12 ACEC USER FEEDBACK

ACEC users have two formal paths to provide feedback to influence future ACEC development.
They can submit written problem reports and they can write change requests. No telephone
support is provided. Written problem reports and change requests will be accepted, as directed
below.

12.1 HOW TO SUBMIT A PROBLEM REPORT

Not every problem an ACEC user encounters with the test suite will be appropriate to report
through the ACEC problem reporting system. If an ACEC program uncovers a clear error
in a compilation system. this should simply be reported to the organization maintaining the
compiler for resolution. Not all ACEC programs will be portable to all systems, since the test
suite includes test problems to explore the performance of some implementation dependent
features, and may have some programs which test features not supported on all targets. For
example: tying tasks to interrupts file I/O operations operations on extended precision floating
point types: interface to assembler routines: and some large programs which may exceed the
capacity of some systems (at either execution time or compile time).

Failure of a test program is not sufficient reason to write an ACEC problem report unless
the user believes that the failure is due to an error in the test problem itself, and is neither
a reflection of an implementation error, nor a (legally) unsupported feature, nor a capacity
limitation. Alternately. a test program may compile and execute without errors on an Ada
implementation. but a user could still believe that the program is erroneous and submit an
ACEC error report. This might occur when:

* The program illegally uses implementation dependent features, even though it worked on
all the systems tested until the problem was discovered.

o A test problem is unexpectedly optimizable into something much different than the orig-
inal "intent" of the test problem, as stated in the purpose. An example would be one
where an optimizing compiler determines that the initialization code for a test problem
can be folded into the body of the test problem, resulting in the test problem simplifying
into a literal assignment. when the stated purpose of the problem is not to check for
folding. The test problem as distributed may be a valid test problem to detect the pres-
ence of the "unexpected" optimization, but the purpose is wrong and the original intent
may not be adequately tested for in the suite.

9 A test problem which does not perform essentially the same computations on each rep-
etition of the timing loop is invalid and should be corrected. If such a case is detected.
it should be reported.

After completing the form on the following page, it should be mailed to:

104

R Szymanski
Ada Compiler Evaluatiou Capability. Error Report
WRDC AAAF
Wright-Patterson AFB OH 4,543 6543

105

ADA COMPILER EVALUATIO)N CAPABILITY
SOFTWARE PROBLEM REPORT

ORIGINAfOR IDENTIFICATION

Originator's flame

Organization

Address

Telephone

Date

SYSTEM IDENTIFICATION

ACEC VERSION
Compilation System Version

Host Operating System Version

Target Operating System Version

Hardware Identification

PROBLEM DESCRIPTION

Source File with Problem

Explariation:

(attach more pages if necessary)

106

12.2 HOW TO REQUEST CHANGES

There may be several types of change requests.

e They may consist of a program to be incorporated into the test suite. The simplest way
for a user to submit a test problem, without needing to study the internals of the ACEC
packages is to make their test programs match the following template

procedure TESTPROC is

end TESTPROC:

with global; use global:

with calendar. use calendar:

with text io: use text io:
with TESTPROC;

procedure SAMPLE is

package int io is new integer Io (int); use int io:

package flt-io is new float io (real); use fit io;

begin

pragma include (inittime")
pragma include (" startirne'");

TESTPROC:

pragma include ("stoptime0");

put(" TESTPROC .): name and description goes here

pragma include (" stoptime2):

end SAMPLE:

Fi,,, II: SAMPLE TEST PROGRAM TEMPLATE

The procedure TESTPROC is a separate compilation unit containing the code to be

neasured. Separating it from the procedure SAMPLE avoids possible naming conflicts

with variables in the ACEC package GLOBAL. Submitters should try to follow the guide-
lines for test problem construction discussed in the Section "Considerations for Coding

107

Additional Tests". They should verify that the names of the compilation units submitted
do not duplicate names of units in the ACEC. They should include a filled out comment
template.

" They may request that areas of the language, or various application problem domains,
be studied for the creation of additional test problems. An example of such a request
might be. "Include more testing of arithmetic on fixed point types or complex record
structures," or "Include more examples of opeiations on limited and limiited l)riv,'at,
types," or 'Include an example of the simplex linear programming method."

" They may request enhancements to or modification of support tools.

* They may request modification to test procedures.

" They may request modifications to work around restrictions imposed by some compilation
systems which will permit a variation of an existing test program to work under more
systems.

* They may request a test problem be modified to work around a restriction on a system
being tested. If the test problem was invalid Ada, then an error report, rather than a
change request would be appropriate. A modification to an existing problem which makes
it more portable would be a proper subject for a change request.

The depth of detail of a change request may vary. The more specific a request is, the easier
it will be to respond to.

Change requests will be logged, evaluated and resolved.
After completing the form from the next page, it should be mailed to:

R. Szymanski
Ada Compiler Evaluation Capability, Change Request
WRDC/AAAF

Wright-Patterson AFB OH 45433-6543

108

ADA COMPILER EVALUATION CAPABILITY
CHANGE REQUEST

ORIGINATOR IDENTIFICATION

Originator's Name

Organization

Address

Telephone

Date

SYSTEM IDENTIFICATION

ACEC VERSION
Compilation System Version
Host Operating System Version
Target Operating System Versior
Hardware Identification
(if a test program is submitted for incorporation
into the ACEC, identify where it has been tested)

CHANGE DESCRIPTION AND JUSTIFICATION

(attach more pages if necessary)

109

13 NOTES

This section contains information only and is not contractually binding

13.1 ABBREVIATIONS, ACRONYMS

ACEC Ada Compiler Evaluation Capability
ACM Association for Computing Machinery

BMA Boeing Military Airplanes

CPU Central Processing Unit
CSCI Computer Software Configuration Item

DEC Digital Equipment Corporation

I/0 Input / Output

LRM (Ada) Language Reference Manual (MIL-STD-1815A)

MCCR Mission Critical Computer Resource

NUMWG Numerics Working Group
(ACM SIGAda organization)

RTS RunTime System

SIGAda Special Interest Group on Ada

(ACM sponsored organization)
SSA Single System Analysis

(proper name of an ACEC analysis tool)

VAX Virtual Address eXtension

(DEC family of processors)
VDD Version Description Document
VMS Virtual Memory System

(DEC operating system for VAX processors)

110

